Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T03:26:39.853Z Has data issue: false hasContentIssue false

Persistence and Degradation of Pyrazon in Soil

Published online by Cambridge University Press:  12 June 2017

D. T. Smith
Affiliation:
Department of Crop Science, Michigan State University
W. F. Meggitt
Affiliation:
Michigan State University

Abstract

Based on bioassays of soil samples from field plots, the rate of disappearance of 5-amino-4-chloro-2-phenyl-3 (2H)-pyridazinone (pyrazon) was estimated with a multiple regression equation. Within a limited geographic region, pyrazon residues were directly related to the organic matter content of soil and inversely related to rainfall during the growing season. The bacteria population increased with the presence of pyrazon in soil at soil temperatures ranging from 4.5 to 29.5 C, indicating a wide capability of microbiological utilization of the herbicide in soil. There was no evidence that soil bacteria or actinomycetes were adversely affected by pyrazon. Thin layer chromatography of ethanol extracts of soil containing 3H-phenyl-labeled and 14C-pyridazinone-labeled pyrazon revealed that pyrazon is dephenylated to 5-amino-4-chloro-3-pyridazinone. In a sandy loam soil, less than 10% of the herbicide was degraded to 5-amino-4-chloro-3-pyridazinone after 10 weeks at 21 C.

Type
Research Article
Copyright
Copyright © 1970 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Drescher, N. 1964. Bestimmung der ruckstande von Pyramin in pflanze und boden (Determination of PCA residue in plants and soils), pp. 7884. In Vorträge anlässlick der Wissenschaftlichen Aussprache über Chemische Unkrautbekampfung in Zuckerrüben mit Pyramin. (Badische Anilin-and Soda-Fabrik AG. Ludwigshaften am Rhein, Germany).Google Scholar
2. Fischer, A. 1964. Die wirkungsweise von Pyramin (The mode of action of Pyramin), pp. 1924. In Vorträde anlässlick der Wissenschaftlichen Aussprache über Chemische Unkrautbekampfung in Zuckerrüben mit Pyramin. (Badische anilin-and Sode-Fabrik AG. Ludwigshaften am Rhein, Germany).Google Scholar
3. Goring, C. A. I., Youngson, C. R., and Hamaker, J. W. 1965. Tordon herbicide disappearance from soils. Down to Earth 20(4):35.Google Scholar
4. Jenson, H. L. 1953. Decomposition of chloro-substituted aliphatic acids by soil bacteria. Can. J. Microbiol. 3:151164.Google Scholar
5. Jung, J. 1964. Der einfluss von Pyramin duf bodenatmung und nitrifikation (The influence of Pyramin on soil respiration and nitrification) pp. 8591. In Vorträge anlässlick der Wissenschaftlichen Aussprache über Chemische Unkrautbekampfung in Zuckerrüben mit Pyramin. (Badische Anilin-and Soda-Fabrik AG. Ludwigshaften am Rhein, Germany).Google Scholar
6. Kaufman, D. D. 1966. Microbial degradations of herbicide combinations: amitrol and dalapon. Weeds 14:130134.Google Scholar
7. Pommer, E. H. 1964. Der einfluss von Pyramin auf die bodenpilze (Influence of Pyramin on soil fungi), pp. 9294. In Vorträge anlässlick der Wissenschaftlichen Aussprache über Chemische Unkrautbekampfung in Zuckerrüben mit Pyramin. (Badische Anilin-and Soda-Fabrik AG. Ludwigshaften am Rhein, Germany).Google Scholar
8. Pramer, D. and Schmidt, E. L. 1965. Experimental Soil Microbiology. Burgess, Minneapolis, Minn. 107 p.Google Scholar
9. Smith, D. T. and Meggitt, W. F. 1970. Movement and distribution of pyrazon in soil. Weed Sci. 18: (in press).CrossRefGoogle Scholar
10. Stephenson, G. R. and Ries, S. K. 1967. The movement and metabolism of pyrazon in tolerant and susceptible species. Weed Res. 7:5160.CrossRefGoogle Scholar
11. U. S. Dep. of Com. Environmental Sci. Serv. 1964–1966. Climatological Data. Michigan 7181.Google Scholar