Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T16:44:06.901Z Has data issue: false hasContentIssue false

The nature and consequence of weed spatial distribution

Published online by Cambridge University Press:  12 June 2017

Gregg A. Johnson
Affiliation:
Department of Agronomy, University of Minnesota Southern Experiment Station, Waseca, MN 56093
Denise H. Sparrow
Affiliation:
Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, Ohio State University, Wooster, OH 44691

Abstract

Seed dispersal, interacting with environmental disturbance and management across heterogeneous landscapes, results in irregular weed spatial distributions. Describing, predicting, and managing weed populations requires an understanding of how weeds are distributed spatially and the consequences of this distribution for population processes. Semivariograms and kriged maps of weed populations in several fields have helped describe spatial structure, but few generalizations can be drawn except that populations are aggregated at one or more scales. Limited information is available on the effect of weed arrangement, pattern, or field location on weed population processes. Because weeds are neither regular nor uniform in distribution, mean density alone is of limited value in estimating yield loss or describing population dynamics over a whole field. Sampling strategies that account for spatial distribution can increase sampling efficiency. Further research should focus on understanding processes that cause changes in spatial distributions over time to help predict rates of invasion and potential extent of colonization.

Type
Symposium
Copyright
Copyright © 1997 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Audsley, E. 1993. Operational research analysis of patch spraying. Crop Prot. 12: 111118.Google Scholar
Ballare, C. L., Scopel, A. L., Ghersa, C. M., and Sanchez, R. A. 1987a. The demography of Datura ferox (L.) in soybean crops. Weed Res. 27: 91102.CrossRefGoogle Scholar
Ballare, C. L., Scopel, A. L., Ghersa, C. M., and Sanchez, R. A. 1987b. The population ecology of Datura ferox in soybean crops. A simulation approach incorporating seed dispersal. Agric. Ecosyst. Environ. 19: 177188.Google Scholar
Bigwood, D. W. and Inouye, D. W. 1988. Spatial pattern analysis of seed banks: An improved method and optimized sampling. Ecology 69: 497507.Google Scholar
Brain, P. and Cousens, R. 1990. The effect of weed distribution on predictions of yield loss. J. Appl. Ecol. 27: 735742.CrossRefGoogle Scholar
Cantrell, R. S. and Cosner, C. 1991. The effects of spatial heterogeneity in population dynamics. J. Math. Biol. 29: 315338.Google Scholar
Cardina, J., Sparrow, D. H., and McCoy, E. L. 1995. Analysis of spatial distribution of common lambsquarters (Chenopodium album) in no-till soybean (Glycine max). Weed Sci. 43: 258268.Google Scholar
Cardina, J., Sparrow, D. H., and McCoy, E. L. 1996. Spatial relationships between seedbank and seedling populations of common lambsquarters (Chenopodium album) and annual grasses. Weed Sci. 44: 298308.Google Scholar
Carson, H. W., Lass, L. W., and Callihan, R. H. 1995. Detection of yellow hawkweed (Hieracium pratense) with high resolution multispectral digital imagery. Weed Technol. 9: 477483.CrossRefGoogle Scholar
Cousens, R., Brain, P., O&Donovan, J. T., and O&Sullivan, P. A. 1987. The use of biologically realistic equations to describe the effects of weed density and relative time of emergence on crop yield. Weed Sci. 35: 720725.CrossRefGoogle Scholar
Cousens, R. and Mortimer, M. 1995. Dynamics of Weed Populations. Cambridge, Great Britain: Cambridge University Press, pp. 217242.CrossRefGoogle Scholar
Dessaint, F. and Caussanel, J. P. 1994. Trend surface analysis: a simple tool for modelling spatial pattern of weeds. Crop Prot. 13: 433438.Google Scholar
Dessaint, F., Chadoeuf, R., and Barralis, G. 1991. Spatial pattern analysis of weed seeds in cultivated soil seed bank. J. Appl. Ecol. 28: 721730.CrossRefGoogle Scholar
Donald, W. W. 1994. Geostatistics for mapping weeds, with a Canada thistle (Cirsium arvense) patch as a case study. Weed Sci. 42: 648657.Google Scholar
Doyle, C. J. 1991. Mathematical models in weed management. Crop Prot. 10: 432444.CrossRefGoogle Scholar
Dunning, J. B., Danielson, B. J., and Pulliam, H. R. 1992. Ecological processes that affect populations in complex landscapes. Oikos 65: 169175.Google Scholar
Everitt, J. H., Anderson, G. L., Escobar, D. E., Davis, M. R., Spencer, N. R., and Andrascik, R. J. 1995. Use of remote sensing for detecting and mapping leafy spurge (Euphorbia esula). Weed Technol. 9: 599609.Google Scholar
Firbank, L. G. 1993. Implications of scale on the ecology and management of weeds. in Bunce, R.G.H., Ryszkowski, L., and Paoletti, M. G., eds. Landscape Ecology and Agroecosystems. Boca Raton, FL: Lewis Publishers, pp. 91104.Google Scholar
Forcella, F. 1993. Value of managing within-field variability. in Robert, P. C., Rust, R. H., and Larson, W. E., eds. Soil Specific Crop Management. Madison, WI: ASA, CSSA, SSSA, pp. 125132.Google Scholar
Forcella, F., Wilson, R. G., Renner, K. A., Dekker, J., Harvey, R. G., Alm, D. A., Buhler, D. D., and Cardina, J. 1992. Weed seedbanks of the U.S. corn belt: magnitude, variation, emergence, and application. Weed Sci. 40: 636644.Google Scholar
Franz, E., Gebhardt, M. R., and Unklesbay, K. B. 1991. The use of local spectral properties of leaves as an aid for identifying weed seedlings in digital images. Trans. ASAE. 34: 682687.Google Scholar
Ghersa, C. M. and Roush, M. L. 1993. Searching for solutions to weed problems: do we study competition or dispersion? BioScience 43: 104109.CrossRefGoogle Scholar
Gold, H. J., Bay, J., and Wilkerson, G. G. 1996. Scouting for weeds, based on the negative binomial distribution. Weed Sci. 44: 504510.Google Scholar
Gonzalez-Andujar, J. L. and Perry, J. N. 1995. Models for the herbicidal control of the seed bank of Avena sterilis: the effects of spatial and temporal heterogeneity and of dispersal. J. Appl. Ecol. 32: 578587.CrossRefGoogle Scholar
Haggar, R. J., Stent, C. J., and Isaac, S. 1933. A prototype hand-held patch sprayer for killing weeds, activated by spectral differences in crop/weed canopies. J. Agric. Eng. Res. 28: 349358.Google Scholar
Hughes, G. 1996. Incorporating spatial pattern of harmful organisms into crop loss models. Crop Prot. 15: 407421.Google Scholar
Hughes, G. 1990. The problem of weed patchiness. Weed Res. 30: 223224.CrossRefGoogle Scholar
Johnson, G. A. 1994. Model Parameterization, Parametric Sequential Sampling, and Geostatistical Analysis of Weed Seedling Populations. Ph.D. dissertation. University of Nebraska, Lincoln, NE. 202 p.Google Scholar
Johnson, G. A., Mortensen, D. A., and Gotway, C. A. 1996a. Spatial and temporal analysis of weed seedling populations using geostatistics. Weed Sci. 44: 704710.Google Scholar
Johnson, G. A., Mortensen, D. A., and Martin, A. R. 1995a. A simulation of herbicide use based on weed spatial distribution. Weed Res. 35: 197205.Google Scholar
Johnson, G. A., Mortensen, D. A., Young, L. J., and Martin, A. R. 1995b. The stability of weed seedling population models and parameters in eastern Nebraska corn (Zea mays) and soybean (Glycine max) fields. Weed Sci. 43: 604611.Google Scholar
Johnson, G. A., Mortensen, D. A., Young, L. J., and Martin, A. R. 1996b. Parametric sequential sampling based on multistage estimation of the negative binomial parameter k . Weed Sci. 44: 555559.Google Scholar
Kareiva, P. 1990. Population dynamics in spatially complex environments: theory and data. Phil. Trans. Royal Soc. Lon. B 330: 175190.Google Scholar
King, R. P., Lybecker, D. W., Schweizer, E. E., and Zimdahl, R. L. 1986. Bioeconomic modeling to simulate weed control strategies for continuous corn (Zea mays). Weed Sci. 34: 972979.Google Scholar
Levin, S. A. 1992. The problem of pattern and scale in ecology. Ecology 73: 19431967.Google Scholar
Lloyd, M. L. 1967. Mean crowding. J. Anim. Ecol. 36: 130.Google Scholar
Ludwig, J. A. and Reynolds, J. R. 1988. Spatial pattern analysis. In Ludwig, J. A. and Reynolds, J. R. Statistical Ecology: A Primer on Methods and Computing. New York: J. Wiley, pp. 1366.Google Scholar
Marra, M. C. and Carlson, G. A. 1983. An economic threshold model for weeds in soybeans (Glycine max). Weed Sci. 37: 8492.Google Scholar
Marshall, E.J.P. 1988. Field-scale estimates of grass weed populations in arable land. Weed Res. 28: 191198.Google Scholar
Marshall, E.J.P. 1989. Distribution patterns of plants associated with arable field edges. J. Appl. Ecol. 26: 247257.Google Scholar
Maxwell, B. D. and Ghersa, C. 1992. The influence of weed seed dispersion versus the effect of competition on crop yield. Weed Technol. 6: 196204.CrossRefGoogle Scholar
Molofsky, J. 1994. Population dynamics and pattern formation in theoretical populations. Ecology 75: 3039.Google Scholar
Moloney, K. A. 1988. Fine-scale spatial and temporal variation in the demography of a perennial bunchgrass. Ecology 69: 15881598.Google Scholar
Mortensen, D. A. and Coble, H. D. 1991. Two approaches to weed control decision-aid software. Weed Tech. 5: 445452.CrossRefGoogle Scholar
Mortensen, D. A., Johnson, G. A., and Young, L. J. 1993. Weed distribution in agricultural fields. in Robert, P. C., Rust, R. H., and Larson, W. E., eds. Soil Specific Crop Management. Madison, WI: ASA, CSSA, SSSA, pp. 113123.Google Scholar
Navas, M. L. and Goulard, M. 1991. Spatial pattern of a clonal perennial weed, Rubia peregrina (Rubiaceae) in vineyards of southern France. J. Appl. Ecol. 28: 11181129.Google Scholar
Nyrop, J. P. and Simmons, G. A. 1984. Errors incurred when using Iwao&s sequential decision rule in insect sampling. Environ. Entomol. 13: 14591465.CrossRefGoogle Scholar
Oliver, L. R. and Buchanan, G. A. 1986. Weed competition and economic thresholds. in Camper, N. D., ed. Research Methods in Weed Science. 3rd ed. Champaign, IL: Southern Weed Science Society, pp. 7197.Google Scholar
Oriade, C. 1995. A bioeconomic analysis of site-specific management and delayed planting strategies for weed control. Ph.D. dissertation. University of Minnesota, St. Paul, MN. 150 p.Google Scholar
Pacala, S. W. and Silander, J. A. 1987. Neighborhood interference among velvetleaf, Abutilon theophrasti, and pigweed, Amaranthus retroflexus . Oikos 48: 217224.Google Scholar
Patterson, D. T. and Flint, E. P. 1983. Comparative water relations, photosynthesis, and growth of soybean (Glycine max) and seven associated weeds. Weed Sci. 31: 318323.Google Scholar
Shribbs, J. M., Lybecker, D. W., and Schweizer, E. E. 1990. Bioeconomic weed management models for sugarbeet (Beta vulgaris) production. Weed Sci. 38: 436444.Google Scholar
Simard, Y., Legendre, P., Lavoie, G., and Marcotte, D. 1992. Mapping, estimating biomass, and optimizing and sampling programs for spatially autocorrelated data: case study of northern shrimp (Pandalus borealis). Can. J. Fish. Aquat. Sci. 49: 3245.Google Scholar
Thornton, P. K., Fawcett, R. H., Dent, J. B., and Perkins, T. J. 1990. Spatial weed distribution and economic thresholds for weed control. Crop Prot. 9: 337342.Google Scholar
Timmons, F. L. 1970. A history of weed control in the United States and Canada. Weed Sci. 18: 294307.CrossRefGoogle Scholar
VanGroenendael, J. M. 1988. Patchy distributions of weeds and some implications for modelling population dynamics: a short literature review. Weed Res. 28: 437441.Google Scholar
Vauclin, M., Vieira, S. R., Vauchaud, G., and Nielsen, D. R. 1983. The use of cokriging with limited field soil observations. Soil Sci. Soc. Am. J. 47: 175184.Google Scholar
Watson, D. J. 1947. Comparative physiological studies on the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Ann. Bot. 11: 4176.Google Scholar
Wiles, L. J., Oliver, G. W., York, A. C., Gold, H. J., and Wilkerson, G. G. 1992a. Spatial distribution of broadleaf weeds in North Carolina soybean (Glycine max) fields. Weed Sci. 40: 554557.CrossRefGoogle Scholar
Wiles, L. J., Wilkerson, G. G., and Gold, H. J. 1992b. Value of information about weed distribution for improving postemergence control decisions. Crop Prot. 11: 547554.Google Scholar
Wiles, L. J., Wilkerson, G. G., Gold, H. J., and Coble, H. D. 1992c. Modeling weed distribution for improved postemergence control decisions. Weed Sci. 40: 546553.Google Scholar
Williams, L., Schotzko, D. J., and McCaffrey, J. P. 1992. Geostatistical description of the spatial distribution of Limonius californicus wire worms in the northwestern United States, with comments on sampling. Environ. Entomol. 21: 983995.CrossRefGoogle Scholar
Wilson, B. J. and Brain, P. 1991. Long-term stability of distribution of Alopercurus myosuroides Huds. within cereal fields. Weed Sci. 31: 367373.Google Scholar
Woebbecke, D. M., Meyer, G. E., Von Bar gen, K., and Mortensen, D. A. 1993. Plant species identification, size, and enumeration using machine vision techniques on near-binary images. in DeShazer, J. A., ed. Proceedings of the SPIE Conference on Optics in Agriculture and Forestry. Vol 1836. Boston, MA: SPIE, pp. 208219.Google Scholar
Wyse-Pester, D. and Mortensen, D. A. 1996. The stability in spatial patterns and density of weed populations. WSSA Abstr. 36: 44.Google Scholar