Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T01:50:50.907Z Has data issue: false hasContentIssue false

Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus) and Powell amaranth (Amaranthus powellii)

Published online by Cambridge University Press:  20 January 2017

Kristen E. McNaughton
Affiliation:
Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, Canada
Jocelyne Letarte
Affiliation:
Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, Canada
Elizabeth A. Lee
Affiliation:
Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, Canada

Abstract

A number of redroot pigweed and Powell amaranth populations from various locations in Ontario, Canada, have distinct patterns of resistance to the acetolactate synthase–inhibiting herbicides imazethapyr and thifensulfuron. This suggested the presence of diverse ALS gene mutations among these populations. Seven polymerase chain reaction primer pairs were used to amplify the gene to obtain full sequence information and to determine the identity of resistance-conferring mutations. There was a high degree of similarity in the ALS gene of the two species with only five nucleotides and one amino acid differing. A total of four herbicide resistance-conferring mutations were identified in the two species. The Ala122Thr, Ala205Val, and Trp574Leu amino acid substitutions were found in redroot pigweed whereas Ala122Thr, Trp574Leu, and Ser653Thr were detected in Powell amaranth. The pattern of resistance known to be conferred by the mutations concurred with the resistance level observed at the whole plant level. Distinct mutations being found in geographically separated populations suggest that selection for resistance occurred simultaneously in different locations. It reinforces the fact that resistance to ALS inhibitors is easily selected and that growers need to take this into account when formulating weed management strategies.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem 270:1738117385.Google Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1996. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem 271:13925.Google Scholar
Boutsalis, P., Karotam, J., and Powles, S. B. 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii . Pest. Sci 55:507516.3.0.CO;2-G>CrossRefGoogle Scholar
Chong, C. K. and Choi, J. D. 2000. Amino acid residues conferring herbicide tolerance in tobacco acetolactate synthase. Biochem. Biophys. Res. Commun 279:462467.CrossRefGoogle ScholarPubMed
Costea, M., Weaver, S. E., and Tardif, F. J. 2004. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Can. J. Plant Sci 84:631668.CrossRefGoogle Scholar
Diebold, R. S., McNaughton, K. E., Lee, E. A., and Tardif, F. J. 2003. Multiple resistance to imazethapyr and atrazine in Powell amaranth (Amaranthus powellii). Weed Sci 51:312318.Google Scholar
Fang, L. Y., Gross, P. R., Chen, C. H., and Lillis, M. 1992. Sequence of two acetohydroxyacid synthase genes from Zea mays . Plant Mol. Biol 18:11851187.Google Scholar
Ferguson, G. M., Hamill, A. S., and Tardif, F. J. 2001. ALS-inhibitor resistance in populations of Amaranthus powellii and Amaranthus retroflexus . Weed Sci 49:448453.Google Scholar
Foes, M. J., Liu, L., Vigue, G., Stoller, E. W., Wax, L. M., and Tranel, P. J. 1999. A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci 47:2027.Google Scholar
Guttieri, M. J., Eberlein, C. V., and Thill, D. C. 1995. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci 43:175178.Google Scholar
Heap, I. 2004. The International Survey of Herbicide Resistant Weeds. www.weedscience.com.Google Scholar
Lee, Y., Chang, A. K., and Duggleby, R. G. 1999. Effect of mutagenesis at serine 653 of Arabidopsis thaliana acetohydroxyacid synthase on the sensitivity to imidazolinone and sulfonylurea herbicides. FEBS Lett 452:341345.CrossRefGoogle ScholarPubMed
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol 4:163168.Google Scholar
Milliman, L. D., Riechers, D. E., Wax, L. M., and Simmons, F. W. 2003. Characterization of two biotypes of imidazolinone-resistant eastern black nightshade (Solanum ptycanthum). Weed Sci 51:139144.CrossRefGoogle Scholar
Mosyakin, S. L. and Robertson, K. R. 1996. New infrageneric taxa and combinations in Amaranthus (Amaranthaceae). Ann. Bot. Fenn 33:275281.Google Scholar
Patzoldt, W. L. and Tranel, P. J. 2001. ALS mutations conferring herbicide resistance in waterhemp. Proc. N. Cent. Weed Sci. Soc 56:67.Google Scholar
Preston, C. and Mallory Smith, C. A. 2001. Biochemical mechanisms, inheritance and molecular genetics of herbicide resistance in weeds. Pages 2360 in Powles, S. B. and Shaner, D. L. eds. Herbicide Resistance in World Grains. Boca Raton, FL: CRC.Google Scholar
Rutledge, R. G., Quellet, T., Hattori, J., and Miki, B. L. 1991. Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family. Mol. Gen. Genet 229:3140.CrossRefGoogle ScholarPubMed
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 141170 in Powles, S. B. and Holtum, J.A.M. eds. Herbicide Resistant Plants: Biology and Biochemistry. Boca Raton, FL: CRC.Google Scholar
Santel, H. J., Bowden, B. A., Sorensen, V. M., and Mueller, K. H. 1999. Flucarbazone-sodium—a new herbicide for the selective control of wild oat and green foxtail in wheat. Pages 2328 in Proceedings 1999 Brighton Conference—Weeds, Volume 1. Farnham, U.K.: British Crop Protection Council.Google Scholar
Sauer, J. D. 1955. Revision of the dioecious amaranths. Madroño 13:546.Google Scholar
Siehl, D. L., Bengston, A. S., Brockman, J. P., Butler, J. H., Kraatz, G. W., Lamoreaux, R. J., and Subramanian, M. V. 1996. Patterns of cross-tolerance to herbicides inhibiting acetohydroxyacid synthase in commercial corn varieties designed for tolerance to imidazolinones. Crop Sci 36:274278.Google Scholar
Tan, M. K. and Medd, R. W. 2002. Characterisation of the acetolactate synthase (ALS) gene of Raphanus raphanistrum L. and the molecular assay of mutations associated with herbicide resistance. Plant Sci 163:195205.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50:700712.Google Scholar
Uchino, A. and Watanabe, H. 2002. Mutations in the acetolactate synthase genes of sulfonylurea-resistant biotype of Lindernia spp. Weed Biol. Manag 2:104109.Google Scholar
White, A. D., Graham, M. A., and Owen, M. D. K. 2003. Isolation of acetolactate synthase homologs in common sunflower. Weed Sci 51:845853.Google Scholar
Woodworth, A. R., Bernasconi, P., Subramanian, M. V., and Rosen, B. A. 1996a. A second naturally occurring point mutation confers broad based tolerance to acetolactate synthase inhibitors. Plant Physiol 111:S105.Google Scholar
Woodworth, A. R., Rosen, B. A., and Bernasconi, P. 1996b. Broad range resistance to herbicides targeting acetolactate synthase (ALS) in a field isolate of Amaranthus sp. is conferred by a Trp to Leu in the ALS Gene. Plant Physiol 111:1353.Google Scholar
Wright, T. R., Bascomb, N. F., Sturner, S. F., and Penner, D. 1998. Biochemical mechanism and molecular basis for ALS-inhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selections. Weed Sci 46:1323.Google Scholar
Yu, Q., Zhang, X. Q., Hashem, A., Walsh, M. J., and Powles, S. B. 2003. ALS gene proline (197) mutations confer ALS herbicide resistance in eight geographically separated Raphanus raphanistrum populations. Weed Sci 51:831838.CrossRefGoogle Scholar