Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-02T19:10:35.821Z Has data issue: false hasContentIssue false

Morphological and Physiological Variation among Species of the Genus Echinochloa in Northern Greece

Published online by Cambridge University Press:  20 January 2017

Christos A. Damalas
Affiliation:
Laboratory of Agronomy, University of Thessaloniki, 541 24 Thessaloniki, Greece
Kico V. Dhima
Affiliation:
Laboratory of Crop Science, Technological and Educational Institute of Thessaloniki, 541 01 Sindos, Greece
Ilias G. Eleftherohorinos*
Affiliation:
Laboratory of Agronomy, University of Thessaloniki, 541 24 Thessaloniki, Greece
*
Corresponding author's E-mail: [email protected]

Abstract

The variability of 12 Echinochloa populations with respect to certain morphological and physiological characteristics, sensitivity to certain POST rice herbicides, and activity of selected enzymes was studied. Three distinct groups (each one represented by four populations from different areas) were studied: E. crus-galli, E. oryzoides, and E. phyllopogon. All the E. oryzoides and E. phyllopogon populations showed earlier seed germination and higher germination percentages than the E. crus-galli populations. All the E. oryzoides and E. phyllopogon populations showed reduced susceptibility to propanil, cyhalofop, clefoxydim, and bispyribac compared with the E. crus-galli populations. With respect to plant prostrateness, the species order, averaged over the four populations, was E. crus-galli prostrate > E. oryzoides relatively erect > Ε. phyllopogon phyllopogon. erect, while the species order with respect to leaf length and tillering ability was E. crus-galli ≥ E. oryzoides > Ε. phyllopogon. Regarding leaf width, time of panicle emergence, height, and biomass accumulation, the order was E. crus-galli > E. oryzoides > Ε. phyllopogon, while that of seed weight, length and width was E. oryzoides > Ε. phyllopogon > E. crus-galli. The order of species susceptibility (averaged over the four populations) to most of the herbicide treatments was E. crus-galli > E. oryzoides > E. phyllopogon, which was exactly the opposite of that relating to their antioxidant enzyme activity. Finally, the order of herbicide efficacy, averaged over all Echinochloa populations, was penoxsulam > clefoxydim > bispyribac > cyhalofop > propanil. Variability in a number of traits among the most common Echinochloa species of rice fields in northern Greece as a result of different adaptive strategies of each species may be related to differential sensitivity to herbicides. This variability should be taken into account for the elaboration of effective weed management programs in rice. Where mixed populations of these species are present in a field, difficulties may arise in the successful chemical control of the Echinochloa complex in rice due to species differences in biology and herbicide sensitivity.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Asíns, M. J., Carretero, J. L., del Busto, A., Carbonell, E. A., and Gómez de Barreda, D. 1999. Morphologic and isozyme variation in barnyardgrass (Echinochloa) weed species. Weed Technol. 13:209215.CrossRefGoogle Scholar
Barrett, S. C. H. 1983. Crop mimicry in weeds. Econ. Bot. 37:255282.Google Scholar
Barrett, S. C. H. and Seaman, D. E. 1980. The weed flora of Californian rice fields. Aquat. Bot. 9:351376.Google Scholar
Barrett, S. C. H. and Wilson, B. F. 1981. Colonizing ability in the Echinochloa crus-galli complex (barnyardgrass). I. Variation in life history. Can. J. Bot. 59:18441860.Google Scholar
Barrett, S. C. H. and Wilson, B. F. 1983. Colonizing ability in the Echinochloa crus-galli complex (barnyardgrass). II. Seed biology. Can. J. Bot. 61:556562.CrossRefGoogle Scholar
Beauchamp, C. and Fridovich, I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44:276287.CrossRefGoogle Scholar
Carretero, J. L. 1981. El género Echinochloa en el suroeste de Europa. An. Jard. Bot. Madrid. 38:91108.Google Scholar
Carretero, J. L. 1989. Variación en la sensibilidad al propanil del género Echinochloa de los arrozales valencianos (España). Pages 407411. in. Proceedings of the 4th European Weed Research Society Mediterranean Symposium: Weed Problems in the Mediterranean Climates. Valencia, Spain.Google Scholar
Carretero, J. L., Gómez de Barreda, D., Balasch, S., del Busto, A., and Lladró, M. A. 1997. Variación en la sensibilidad al molinato del género Echinochloa de los arrozales valencianos. Pages 247251. in. Congreso del Sociedad Española de Malherbología. Valencia, Spain.Google Scholar
Clayton, W. D. 1980. Echinochloa Beauv. Pages 261262. in Tutin, T. G., Heywood, V. H., Burges, N. A., Valentine, D. H., Walters, S. M., and Webb, D. A. Flora Europaea. Volume 5. Cambridge, UK Cambridge University Press.Google Scholar
Costea, M. and Tardif, F. J. 2002. Taxonomy of the most common weedy European Echinochloa species (Poaceae: Panicoideae) with special emphasis on characters of the lemma and caryopsis. SIDA Contrib. Bot. 20:525548.Google Scholar
Damalas, C. A., Dhima, K. V., and Eleftherohorinos, I. G. 2006. Control of early watergrass (Echinochloa oryzoides) and late watergrass (Echinochloa phyllopogon) with cyhalofop, clefoxydim, and penoxsulam applied alone and in mixture with broadleaf herbicides. Weed Technol. 20:992998.Google Scholar
Gould, F. W., Ali, M. A., and Fairbrothers, D. E. 1972. A revision of Echinochloa in the United States. Am. Midl. Nat. 87:3659.Google Scholar
Gullner, G., Komives, T., and Kiroly, L. 1991. Enhanced inducibility of antioxidant systems in a Nicotiana tabacum L. biotype results in acifluorfen resistance. Z. Naturfosch. C. 46:875881.CrossRefGoogle Scholar
Harper, D. B. and Harvey, B. M. R. 1978. Mechanism of paraquat tolerance in perennial ryegrass. II. Role of superoxide dismutase, catalase and peroxidase. Plant Cell Environ. 1:211215.Google Scholar
Holm, L. G., Pancho, J. V., Herberger, J. P., and Plucknett, D. L. 1977. The World's Worst Weeds. Honolulu, HI University Press of Hawaii. 1129.Google Scholar
Kim, J. S., Oh, J. I., Kim, T. J., Pyon, J. Y., and Cho, K. Y. 2005. Physiological basis of differential phytotoxic activity between fenoxaprop-P-ethyl and cyhalofop-butyl-treated barnyardgrass. Weed Biol. Manag. 5:539545.CrossRefGoogle Scholar
Lopez-Martinez, N., Salva, A. P., Finch, R. P., Marshall, G., and De Prado, R. 1999. Molecular markers indicate intraspecific variation in the control of Echinochloa spp. with quinclorac. Weed Sci. 47:310315.CrossRefGoogle Scholar
Maun, M. A. and Barrett, S. C. H. 1986. The biology of Canadian weeds. 77. Echinochloa crus-galli (L.) Beauv. Can. J. Plant Sci. 66:739759.Google Scholar
Michael, P. W. 1983. Taxonomy and distribution of Echinochloa species with a special reference to their occurrence as weeds of rice. Pages 291306. in. Proceedings of the Conference on Weed Control in Rice. Los Baños, Laguna, Philippines International Rice Research Institute and IWSS.Google Scholar
Ngo, T. T. and Lenhoff, H. M. 1980. A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal. Biochem. 105:389397.Google Scholar
Norris, R. F. 1996. Morphological and phenological variation in barnyardgrass (Echinochloa crus-galli) in California. Weed Sci. 44:804814.CrossRefGoogle Scholar
Pignatti, S. 1982. Flora d'Italia. Volume III. Bologna, Italy Ed Agricole. 2324.Google Scholar
Pyon, J. Y., Piao, R. Z., Roh, S. W., Shin, S. Y., and Kwak, S. S. 2004. Differential levels of antioxidants in paraquat-resistant and -susceptible Erigeron canadensis biotypes in Korea. Weed Biol. Manag. 4:7580.Google Scholar
Ruiz-Santaella, J. P., Bastida, F., Franco, A. R., and De Prado, R. 2006. Morphological and molecular characterization of different Echinochloa spp. and Oryza sativa populations. J. Agric. Food Chem. 54:11661172.Google Scholar
Shaaltiel, Y. and Gressel, J. 1986. Multienzyme oxygen radical detoxifying system correlated with paraquat resistance in Conyza bonariensis . Pestic. Biochem. Physiol. 26:2228.Google Scholar
Sparacino, A. C., Ferrero, A., Ferro, R., and Riva, N. 1994. Morphological analysis of the main Echinochloa species in Italian rice fields. Pages 285292. in. Proceedings of the 5th European Weed Research Society Mediterranean Symposium: Weed Control in Sustainable Agriculture in the Mediterranean Area. Perugia, Italy.Google Scholar
Tabacchi, M., Mantegazza, R., Spada, A., and Ferrero, A. 2006. Morphological traits and molecular markers for classification of Echinochloa species from Italian rice fields. Weed Sci. 54:10861093.CrossRefGoogle Scholar
Vidotto, F., Tesio, F., Tabacchi, M., and Ferrero, A. 2007. Herbicide sensitivity of Echinochloa spp. accessions in Italian rice fields. Crop Prot. 26:285293.Google Scholar
[WSSA] Weed Science Society of America 2007. Herbicide Handbook, 9th ed. 458.Google Scholar
Yabuno, T. 1966. Biosystematic study of the genus Echinochloa . Jpn. J. Bot. 19:277323.Google Scholar
Yamasue, Y. 2001. Strategy of Echinochloa oryzicola Vasing for survival in flooded rice. Weed Biol. Manag. 1:2836.CrossRefGoogle Scholar