Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T07:02:00.688Z Has data issue: false hasContentIssue false

Molecular Basis of Resistance to ALS-Inhibitor Herbicides in Greater Beggarticks

Published online by Cambridge University Press:  20 January 2017

Fabiane P. Lamego*
Affiliation:
CNPq/Brazil and PPG Fitotecnia, School of Agronomy, Federal University of Rio Grande do Sul (UFRGS), Av Bento Gonçalves 7712, Cx Postal 15100, 90001–970, Porto Alegre, RS, Brazil
Dirk Charlson
Affiliation:
Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701
Carla A. Delatorre
Affiliation:
CNPq/Brazil and PPG Fitotecnia, School of Agronomy, Federal University of Rio Grande do Sul (UFRGS), Av Bento Gonçalves 7712, Cx Postal 15100, 90001–970, Porto Alegre, RS, Brazil
Nilda R. Burgos
Affiliation:
Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701
Ribas A. Vidal
Affiliation:
CNPq/Brazil and PPG Fitotecnia, School of Agronomy, Federal University of Rio Grande do Sul (UFRGS), Av Bento Gonçalves 7712, Cx Postal 15100, 90001–970, Porto Alegre, RS, Brazil
*
Corresponding author's E-mail: [email protected]

Abstract

Soybean is a major crop cultivated in Brazil, and acetolactate synthase (ALS)-inhibiting herbicides are widely used to control weeds in this crop. The continuous use of these ALS-inhibiting herbicides has led to the evolution of herbicide-resistant weeds worldwide. Greater beggarticks is a polyploid species and one of the most troublesome weeds in soybean production since the discovery of ALS-resistant biotypes in 1996. To confirm and characterize the resistance of greater beggarticks to ALS inhibitors, whole-plant bioassays and enzyme experiments were conducted. To investigate the molecular basis of resistance in greater beggarticks the ALS gene was sequenced and compared between susceptible and resistant biotypes. Our results confirmed that greater beggarticks is resistant to ALS inhibitors and also indicated it possesses at least three isoforms of the ALS gene. Analysis of the nucleotide and deduced amino acid sequences among the isoforms and between the biotypes indicated that a single point mutation, G–T, in one ALS isoform from the resistant biotype resulted in an amino acid substitution, Trp574Leu. Two additional substitutions were observed, Phe116Leu and Phe149Ser, in a second isoform of the resistant biotype, which were not yet reported in any other herbicide-resistant ALS gene; thus, their role in conferring herbicide resistance is not yet ascertained. This is the first report of ALS mutations in an important, herbicide-resistant weed species from Brazil.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, K. L. and Wendel, J. F. 2005. Polyploidy and genome evolution in plants. Curr. Opin. Plant. Biol. 8:135141.Google Scholar
Ballard, R. 1986. Bidens pilosa complex (Asteraceae) in North and Central America. Am. J. Bot. 73:14521465.Google Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally-occuring point mutation confers broad range tolerance to herbicides that target acetolactase synthase. J. Biol. Chem. 270:1738117385.Google Scholar
Boutsalis, P., Karotam, J., and Powles, S. B. 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii . Pesticide Sci. 55:507516.Google Scholar
Burgos, N. R., Kuk, Y., and Talbert, R. E. 2001. Amarathus palmeri resistance and differential tolerance of Amaranthus palmeri and Smooth pigweed to ALS-inhibitor herbicides. Pest. Manag. Sci. 57:449457.Google Scholar
Christoffers, M. J., Nandula, V. K., Howatt, K. A., and Wehking, T. R. 2006. Target-site resistance to acetolactate synthase inhibitors in mustard (Sinapsis arvensis). Weed Sci. 54:191197.Google Scholar
Devine, M. D., Marles, M. A. S., and Hall, L. M. 1991. Inhibition of acetolactate synthase in susceptible and resistant biotypes of Stellaria media . Pesticide Sci. 31:273280.Google Scholar
Doyle, J. J. and Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:1115.Google Scholar
Eberlein, C. V., Guttieri, M. J., Mallory-Smith, C. A., Thill, D. C., and Baerg, R. J. 1997. Altered acetolactate synthse activity in ALS-inhibitor resistant prickly lettuce (Lactuca serriola). Weed Sci. 45:212217.Google Scholar
Engebrecht, J., Brent, R., and Kaderbhai, M. A. 2003. Minipreps of plasmid DNA. In Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. Current Protocols in Molecular Biology. New York John Wiley and Sons.Google Scholar
Foes, M. J., Liu, L. X., Tranel, P. J., Wax, L. M., and Stoller, E. W. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Sci. 46:514520.Google Scholar
Gerwick, B. C., Mireles, L. C., and Eilers, R. J. 1993. Rapid diagnosis of ALS/AHAS-resistant weeds. Weed Technol. 7:519527.Google Scholar
Grombone-Guaratini, M. T., Mansanares, M. E., Semir, J., and Solferini, V. N. 2006. Chromosomal studies of three species of Bidens L. (Asteraceae). Caryologia. 59:1418.Google Scholar
Grombone-Guaratini, M. T., Semir, J., and Solferini, V. N. 2005. Low allozymic variation in the Bidens pilosa L. complex (Asteraceae). Biochem. Genet. 43:335345.Google Scholar
Grula, J. W., Hudspeth, R. L., Hobbs, S. L., and Anderson, D. M. 1995. Organization, inheritance and expression of acetohydroxyacid synthase genes in the cotton allotetraploid Gossypium hisutum. Plant. Mol. Biol. 28:837846.Google Scholar
Hernandes, G. C., Vidal, R. A., and Winkler, L. M. 2005. Survey of agronomic practices and distribution of ALS resistant Bidens spp. in the states of Rio Grande do Sul and Paraná. Planta Daninha. 4:677682.Google Scholar
Keeler, S. J., Sanders, P., Smith, J. K., and Mazur, B. K. 1993. Regulation of tobacco acetolactate synthase gene expression. Plant Physiol. 102:10091018.Google Scholar
Kolkman, J. M., Slabaugh, M. B., Bruniard, J. M., et al. 2004. Acetohydroxyacid synthase mutations conferring resistance to imidazolinone and sulfonylurea herbicides in sunflower. Theor. Appl. Genet. 109:11471159.Google Scholar
Lopez-Martinez, N., Gonzalez-Gutierrez, J., and de Prado, R. 2001. Propanil activity, uptake, and metabolism in resistant echinochloa spp. biotypes. Weed Res. 41:187196.Google Scholar
López-Ovejero, R. F., Carvalho, S. J. P., Nicolai, M., Abreu, A. G., Grombone-Guaratini, M. T., Toledo, R. E. B., and Christoffoleti, P. J. 2006. Resistance and differential susceptibility of Bidens pilosa and B. subalternans biotypes to ALS-inhibiting herbicides. Sci. Agri. 63:139145.Google Scholar
Mazur, B. J., Chui, C. F., and Smith, J. K. 1987. Isolation and characterization of plant genes coding for acetolactate synthase the target enzyme for two classes of herbicides. Plant. Physiol. 85:11101117.Google Scholar
Mazur, B. J. and Falco, S. C. 1989. The development of herbicide resistant crops. Ann. Rev. Plant. Physiol. Mol. Biol. 40:441470.Google Scholar
McCourt, J. A., Pang, S. S., King-Scott, J., Guddat, L. W., and Duggleby, R. G. 2006. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc. Natl. Acad. Sci. USA. 40:441470.Google Scholar
Menendez, J., Bastida, F., and de Prado, R. 2006. Resistance to chlortoluron in a downy brome (Bromus tectorum) biotype. Weed Sci. 54:237245.Google Scholar
Merotto, A. Jr., Jasieniuk, M., and Fischer, A. J. 2009. Estimating the outcrossing rate of Cyperus difformis using resistance to ALS-inhibiting herbicides and molecular markers. Weed Res. 49:2936.Google Scholar
Monquero, P. A., Christoffoleti, P. J., and Dias, C. T. S. 2000. Weed resistance to ALS-inhibiting herbicides in soybean (Glycine max) crop. Planta Daninha. 18:419425.Google Scholar
Ouellet, T., Rutledge, R. G., and Miki, B. L. 1992. Members of the acetohydroxyacid synthase multigene family of Brassica napus have divergent patterns of expression. Plant J. 2:321330.Google Scholar
Park, K. W. and Mallory-Smith, C. A. 2004. Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes. Weed Res. 44:7177.Google Scholar
Patzoldt, W. L. and Tranel, P. J. 2002. Molecular analysis of cloransulam resistance in a population of giant ragweed. Weed Sci. 50:299305.Google Scholar
Powles, S. B. and Shaner, D. L. 2001. Herbicide Resistance and World Grains. Boca Raton, FL CRC Press. 308.Google Scholar
Prado, M. D., De Prado, R., and Franco, A. R. 2004. Design and optimization of degenerated universal primers for the cloning of the plant acetolactate synthase conserved domains. Weed Sci. 52:487491.Google Scholar
Preston, C. and Mallory-Smith, C. A. 2001. Biochemical mechanisms, inheritance and molecular genetics of herbicide tesistance in weeds. Pages 2360. In Powles, S. B. and Shaner, D. L. Herbicide Resistance and World Grains. Boca Raton CRC Press.Google Scholar
Ray, T. B. 1984. Site of action of chlorsulfuron. Plant Physiol. 75:827831.Google Scholar
Rizzardi, M. A., Fleck, N. G., Mundstock, C. M., and Bianchi, M. A. 2003. Soybean grain yield losses due to interference by beggarticks and arrowleaf sida. Ciência Rural. 33:621627.Google Scholar
Ruiz-Santaella, J. P., Heredia, A., and de Prado, R. 2006. Basis of selectivity of cyhalofop-butyl in Oryza sativa L. Planta. 223:191199.Google Scholar
Rutledge, R. G., Quellet, T., Hattori, J., and Miki, B. L. 1991. Molecular characterization and genetic-origin of the Brassica napus acetohydroxyacid synthase multigene family. Mol. Gen. Genet. 229:3140.Google Scholar
Santel, H. J., Bowden, B. A., Sorensen, V. M., Mueller, K. H., and Reynolds, J. 1999. Flucarbazone-sodium: a new herbicide for grass control in wheat. Pages 124125. in. Proceedings of the Western Society of Weed Science. Colorado Springs, CO Weed Science Society of America.Google Scholar
Scarabel, L., Carraro, N., Sattin, M., and Varotto, S. 2004. Molecular basis and genetic characterization of evolved resistance to ALS-inhibitors in Papaver rhoeas . Plant Sci. 166:703709.Google Scholar
Shaner, D. L. 1991. Mechanisms of resistance to acetolactate synthase/acetohydroxyacid synthase inhibitors. Pages 187198. In Caseley, J. C., Cussans, G. W., and Atkin, R. A. Herbicide Resistance in Weeds and Crops. Oxford Butterworth-Heinemman Ltd.Google Scholar
Shaner, D. L. 2009. The role of translocation as a mechanism of resistance to glyphosate. Weed Sci. 57:118123.Google Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones—potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.Google Scholar
Takahashi, S., Shigematsu, S., and Morita, A. 1991. KIH-2031, a new herbicide for cotton. Pages 5762. in. Proceedings of the Brighton Crop Protection Conference. Farnham, UK Brighton Crop Protection Council.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.Google Scholar
Trezzi, M. M., Felippi, C. L., Mattei, D., Silva, H. L., Nunes, A. L., Debastiani, C., Vidal, R. A., and Marques, A. 2005. Multiple resistance of acetolactate synthase and protoporphyrinogen oxidase inhibitors in Euphorbia heterophylla biotypes. J. Environ. Sci. Health. 40:101109.Google Scholar
Vidal, R. A., Lamego, F. P., Resende, L. V., Da-Silva, P. R., Delatorre, C. A., and Trezzi, M. M. 2005. Genetic similarity among Bidens pilosa accesses resistant to ALS-inhibiting herbicides. Planta Daninha. 23:551556.Google Scholar
Vidal, R. A., Trezzi, M. M., De Prado, R., Ruiz-Santaella, J. P., and Vila-Aiub, M. M. 2007. Glyphosate resistant biotypes of wild poinsettia (Euphorbia heterophylla (L.)) and its risk analysis on glyphosate-tolerant soybeans. J. Food Agr. Environ. 5:265269.Google Scholar
Whaley, C. M., Wilson, H. P., and Westwood, J. W. 2007. A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Sci. 55:8390.Google Scholar
Woodworth, A., Bernasconi, P., Subramanian, M., and Rosen, B. 1996. A second naturally occurring point mutation confers broad-based tolerance to acetolactate synthase inhibitors. Plant Physiol. 111:415–415.Google Scholar
Yang, G., Liu, H., and Yang, H. 1999. QSAR and 3D-QSAR analysis of structurally diverse ALS inhibitors: sulfonylureas and triazolopyrimidine-2-sulfonamides. Pesticide Sci. 55:11431150.Google Scholar
Yuan, J. S., Tranel, P. J., and Stewart, N. 2007. Non-target-site herbicide resistance: a family business. Trends Plant Sci. 12:613.Google Scholar