Published online by Cambridge University Press: 21 September 2017
Cover crop–based, organic rotational no-till (CCORNT) corn and soybean systems have been developed in the mid-Atlantic region to build soil health, increase management flexibility, and reduce labor. In this system, a roller-crimped cover crop mulch provides within-season weed suppression in no-till corn and soybean. A cropping system experiment was conducted in Pennsylvania, Maryland, and Delaware to test the cumulative effects of a multitactic weed management approach in a 3-yr hairy vetch/triticale–corn–cereal rye–soybean–winter wheat CCORNT rotation. Treatments included delayed planting dates (early, intermediate, late) and supplemental weed control using high-residue (HR) cultivation in no-till corn and soybean phases. In the no-till corn phase, HR cultivation decreased weed biomass relative to the uncultivated control by 58%, 23%, and 62% in Delaware, Maryland, and Pennsylvania, respectively. In the no-till soybean phase, HR cultivation decreased weed biomass relative to the uncultivated treatment planted in narrow rows (19 to 38 cm) by 20%, 41%, and 78% in Delaware, Maryland, and Pennsylvania, respectively. Common ragweed was more dominant in soybean (39% of total biomass) compared with corn (10% of total biomass), whereas giant foxtail and smooth pigweed were more dominant in corn, comprising 46% and 22% of total biomass, respectively. Common ragweed became less abundant as corn and soybean planting dates were delayed, whereas giant foxtail and smooth pigweed increased as a percentage of total biomass as planting dates were delayed. At the Pennsylvania location, inconsistent termination of cover crops with the roller-crimper resulted in volunteer cover crops in other phases of the rotation. Our results indicate that HR cultivation is necessary to achieve adequate weed control in CCORNT systems. Integration of winter grain or perennial forages into CCORNT systems will also be an important management tactic for truncating weed seedbank population increases.
Associate Editor for this paper: Martin M. Williams II, USDA–ARS
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.