Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T02:26:01.865Z Has data issue: false hasContentIssue false

Influence of Norflurazon on the Activation of Substituted Diphenylether Herbicides by Light

Published online by Cambridge University Press:  12 June 2017

Robert M. Devlin
Affiliation:
Lab. of Exp. Biol., Cranberry Exp. Stn., Univ. of Massachusetts, East Wareham, MA 02538
Stanislaw J. Karczmarczyk
Affiliation:
Acad. Agric., Szczecin, Poland
Irena I. Zbiec
Affiliation:
Acad. Agric., Szczecin, Poland

Abstract

Oxyfluorfen [2 - chloro -1 - (3 - ethoxy - 4 - nitrophenoxy) -4 - (trifluoromethyl)benzene] and RH-8817 {ethyl 5 - [2-chloro - 4 -{trifluoromethyl) phenoxy] - 2 - nitrobenzoate} require light for activation. Removal of carotenoids by treating corn (Zea mays L.) seedlings with norflurazon [4 - chloro - 5 - (methylamino) - 2 - (α, α, α - trifluoro -m - tolyl) - 3 (2H) - pyridazinone] rendered them partially tolerant of oxyfluorfen and RH-8817 even when grown in the light. The activation of substituted diphenylether herbicides may occur as a result of the absorption of light energy by carotenoids.

Type
Research Article
Copyright
Copyright © 1983 Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bartels, P. G. and Watson, C. W. 1978. Inhibiton of carotinoid synthesis by fluridone and norflurazon. Weed Sci 26:198203.Google Scholar
2. Devlin, R. M., Kisiel, M. J., and Karczmarczyk, S. J. 1976. Chlorophyll production and chloroplast development in norflurazon-treated plants. Weed Res. 16:125129.CrossRefGoogle Scholar
3. Fadayomi, O. and Warren, G. F. 1976. The light requirement for herbicidal activity of diphenyl ethers. Weed Sci. 24:598600.CrossRefGoogle Scholar
4. Gorske, S. F. and Hopen, H. J. 1978. Effects of two diphenyl-ether*** herbicides on common purslane (Portulaca oleraces) Weed Sci. 26:585588.Google Scholar
5. Kunert, K. J. and Böger, P. 1981. The bleaching effect of the diphenyl ether oxyfluorfen. Weed Sci. 29:169173.CrossRefGoogle Scholar
6. Matsunaka, S. 1969. Acceptor of light energy in photoactivation of diphenylether herbicides. J. Agric. Food Chem. 17:171175.Google Scholar
7. Orr, G. L. and Hess, F. D. 1981. Characterization of herbicidal injury by acifluorfen - methyl in excised cucumber (Cucumis sativus L.) cotyledons. Pestic. Biochem. and Physiol. 16:171178.CrossRefGoogle Scholar
8. Orr, G. L. and Hess, F. D. 1982. Mechanism of action of the diphenyl ether herbicide acifluorfen - methyl in excised cucumber (Cucumis sativus L.) cotyledons. Plant Physiol. 69:502507.CrossRefGoogle ScholarPubMed
9. Pritchard, M. K., Warren, G. F., and Dilley, R. A. 1980. Site of action of oxyfluorfen. Weed Sci. 28:640645.Google Scholar
10. Schnarrenberger, C. and Mohr, H. 1970. Carotenoid synthesis in mustard seedlings as controlled by phytochrome and inhibitors. Planta 94:296307.CrossRefGoogle ScholarPubMed
11. Vaisbergh, A. J. and Schiff, J. A. 1976. Events surrounding the early development of Euglena chloroplasts: Inhibition of carotenoid biosynthesis by the herbicide San-9789 [4-chloro-5 - (methylamino) - 2 - (α,α,α - trifluoro -m -tolyl) - 3(2H) pyridazinone] and its development consequences. Plant Physiol. 57:260269.CrossRefGoogle Scholar
12. Vanstone, D. E. and Stobbe, E. H. 1977. Electrolytic conductivity - a rapid measure of herbicide injury. Weed Sci. 25:352354.CrossRefGoogle Scholar
13. Vanstone, D. E. and Stobbe, E. H. 1979. Light requirement of the diphenylether herbicide oxyfluorfen. Weed Sci. 27:8891.Google Scholar