Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-15T07:23:53.540Z Has data issue: false hasContentIssue false

Influence of Glyphosate on Rhizoctonia Crown and Root Rot (Rhizoctonia solani) in Glyphosate-Resistant Sugarbeet

Published online by Cambridge University Press:  20 January 2017

Kelly A. Barnett
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824
Christy L. Sprague*
Affiliation:
Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824
William W. Kirk
Affiliation:
Department of Plant Pathology, Michigan State University, East Lansing, MI 48824
Linda E. Hanson
Affiliation:
U.S. Department of Agriculture–Agricultural Research Service, Michigan State University, East Lansing, MI 48824
*
Corresponding author's E-mail: [email protected]

Abstract

Previous greenhouse studies with a noncommercial glyphosate-resistant sugarbeet variety indicated that susceptibility to Rhizoctonia crown and root rot could increase after glyphosate was applied. Greenhouse and field experiments were conducted in 2008 and 2009 to determine if glyphosate influenced disease severity in potential commercially available varieties of glyphosate-resistant sugarbeet. In the first greenhouse experiment in 2008, Hilleshög 9027RR, the most tolerant variety to Rhizoctonia crown and root rot, exhibited an increase in disease severity when glyphosate was applied. There were no significant differences between herbicide treatments in Hilleshög 9028RR, and glyphosate decreased disease severity in Hilleshög 9032RR when compared with the no-herbicide treatment. Experiments conducted to determine if glyphosate influenced Rhizoctonia solani growth in vitro indicated that glyphosate did not increase the radial growth of R. solani, except at 10× (190 µg ae ml−1) the normal rate of glyphosate plus ammonium sulfate (AMS). Field and additional greenhouse experiments were conducted using four commercial varieties. Differences in disease severity were observed when comparing varieties, but glyphosate did not significantly influence the severity of Rhizoctonia crown and root rot when compared with the no-herbicide control. Choosing a glyphosate-resistant sugarbeet variety with the best demonstrated tolerance to Rhizoctonia crown and root rot is an important factor in reducing disease severity and maintaining sugarbeet yield.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, J. A. and Kolmer, J. A. 2005. Rust control in glyphosate tolerant wheat following application of the herbicide glyphosate. Plant Dis. 89:11361142.Google Scholar
Bentley, R. 1990. The shikimate pathway: a metabolic tree with many branches. Pages 307384 in Fasman, G. D., ed. Critical Reviews of Biochemistry and Molecular Biology. Volume 25. Boca Raton, FL CRC.Google Scholar
Cotterill, P. J., Ballinger, D. J., and Kollmorgen, J. F. 1990. Evaluation of methods for the chemical control of Rhizoctonia root rot or wheat. Crop Prot. 9:275290.Google Scholar
Dale, T. M. and Renner, K. A. 2005. Timing of postemergence micro-rate applications based on growing degree days in sugarbeet. J. Sugar Beet Res. 42:87101.Google Scholar
Dale, T. M., Renner, K. A., and Kravchenko, A. N. 2006. Effect of herbicides on weed control and sugarbeet (Beta vulgaris) yield and quality. Weed Technol. 20:150156.Google Scholar
Datnoff, L. E., Elmer, W. H., and Huber, D. M. 2007. Mineral Nutrition and Plant Disease. St. Paul, MN APS. 278 p.Google Scholar
Dexter, A. G. and Luecke, J. L. 1999. Conventional herbicides at micro-rates, glyphosate and glufosinate for weed control in sugarbeet. Proc. N. Cent. Weed Sci. Soc. 54:158159.Google Scholar
Duke, S. O. and Powles, S. B. 2008. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64:319325.Google Scholar
Feng, P. C., Baley, G. J., Clinton, W. P., Bunkers, G. J., Alibhai, M. F., and Paulitz, T. C. 2005. Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean. Proc. Natl. Acad. Sci. U. S. A. 48:1729017295.Google Scholar
Franc, G. D., Harveson, R. M., Kerr, E. D., and Jacobsen, B. J. 2001. Disease management. Pages 143145 in Wilson, R. G., Smith, J. A., and Miller, S. D., eds. Sugarbeet Production Guide. Lincoln, NE University of Nebraska.Google Scholar
Gianessi, L. P. 2005. Economic and herbicide use impacts of glyphosate-resistant crops. Pest Manag. Sci. 61:241245.Google Scholar
Green, J. M. 2009. Evolution of glyphosate-resistant crop technology. Weed Sci. 57:108117.Google Scholar
Guza, C. G., Ransom, C. V., and Mallory-Smith, C. 2002. Weed control in glyphosate-resistant sugarbeet (Beta vulgaris L.). J. Sugar Beet Res. 39:109123.Google Scholar
Hanson, A. D. and Gregory, J. F. 2002. Synthesis and turnover of folates in plants. Curr. Opin. Plant Biol. 5:244249.Google Scholar
Harikrishnan, R. and Yang, X. B. 2001. Influence of herbicides on growth and sclerotia production in Rhizoctonia solani . Weed Sci. 49:241247.Google Scholar
Kemp, N. J., Taylor, E. C., and Renner, K. A. 2009. Weed management in glyphosate- and glufosinate-resistant sugar beet. Weed Technol. 23:416424.Google Scholar
Kirk, W. W., Wharton, P. S., Schafer, R. L., Rumbalam, P., Poindexter, S., Guza, C., Fogg, R., Schlatter, T., Stewart, J., Hubbell, L., and Ruppal, D. 2008. Optimizing fungicide timing for the control of Rhizoctonia crown and root rot of sugar beet using soil temperature and plant growth stages. Plant Dis. 92:10911098.Google Scholar
Klimek, M., Lejczak, B., Kafarski, P. and Forlani, G. 2001. Metabolism of the phosphanate herbicide glyphosate by a non-nitrate-utilizing strain of Penicillium chrysogenum. Pest Manag. Sci. 57:815821.Google Scholar
Kniss, A. R., Wilson, R. G., Martin, A. R., Burgener, P. A., and Feuz, D. M. 2004. Economic evaluation of glyphosate-resistant and conventional sugar beet. Weed Technol. 18:388396.Google Scholar
Larson, R. L., Hill, A. L., Fenwick, A., Kniss, A. R., Hanson, L. E., and Miller, S. D. 2006. Influence of glyphosate on Rhizoctonia and Fusarium root rot in sugar beet. Pest Manag. Sci. 62:11821192.Google Scholar
Loecker, J. L., Nelson, N. O., Gordon, W. B., Maddux, L. D., Janssen, K. A., and Schapaugh, W. T. 2010. Manganese response in conventional and glyphosate-resistant soybean. Agron. J. 102:606611.Google Scholar
Njiti, V. N., Myers, O. Jr., Schroeder, D., and Lightfoot, D. A. 2003. Roundup Ready soybean: glyphosate effects on Fusarium solani root colonization and sudden death syndrome. Agron. J. 95:11401145.Google Scholar
Panella, L., Lewellen, R. T., and Hanson, L. E. 2008. Breeding for multiple resistance in sugarbeet: registration of FC220 and FC221. J. Plant Reg. 2:146155.Google Scholar
Pankey, J. H., Griffin, J. L., Colyer, P. D., Schneider, R. W., and Miller, D. K. 2005. Preemergence herbicide and glyphosate effects on seedling diseases in glyphosate-resistant cotton. Weed Technol. 19:312318.Google Scholar
Pavreena, R., Naseema, A., and George, S. 2007. Effect of herbicides on Fusarium pallidoroseum—a potential biocontrol agent of water hyacinth [Eichhornia crassipes (Mart.) Solms]. J. Trop. Agric. 45:5557.Google Scholar
Pierson, V. G. and Gaskill, J. O. 1961. Artificial exposure of sugarbeets to Rhizoctonia solani . J. Am. Soc. Sugar Beet Technol. 11:574590.Google Scholar
Pline-Srnic, W. 2005. Technical performance of some commercial glyphosate-resistant crops. Pest Manag. Sci. 61:225234.Google Scholar
Roberti, R., Badiali, F., Pisi, A., Veronesi, A., Pancaldi, D., and Cesari, A. 2006. Sensitivity of Clonostachys rosea and Trichoderma spp. as potential biocontrol agents to pesticides. J. Phytopathol. 154:100109.Google Scholar
Ruppel, E. G. and Hecker, R. J. 1988. Variable selection pressure for different levels of resistance to Rhizoctonia root rot in sugarbeet. J. Sugar Beet Res. 25:6369.Google Scholar
Ruppel, E. G., Schneider, C. L., Hecker, R. J., and Hogaboam, G. J. 1979. Creating epiphytotics of Rhizoctonia root rot and evaluating for resistance to Rhizoctonia solani in sugarbeet field plots. Plant Dis. Rep. 63:518522.Google Scholar
Sanogo, S., Yang, X. B., and Lundeen, P. 2001. Field response of glyphosate-tolerant soybean to herbicide and sudden death syndrome. Plant Dis. 85:773779.Google Scholar
Sanogo, S., Yang, X. B., and Scherm, H. 2000. Effects of herbicides on Fusarium solani f. sp. glycines and development of sudden death syndrome in glyphosate-tolerant soybean. Phytopathology. 90:5766.Google Scholar
Siehl, D. L. 1997. Inhibitors of EPSP synthase, glutamine synthase and histidine synthesis. Pages 3767 in Roe, R. M., ed. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Amsterdam, Netherlands IOS.Google Scholar
Trebbi, D. and McGrath, J. M. 2009. Functional differentiation of the sugar beet root system as indicator of developmental phase change. Physiol. Plant. 135:8497.Google Scholar
Wilson, R. G. 1994. New herbicides for postemergence application in sugarbeet (Beta vulgaris). Weed Technol. 8:307311.Google Scholar
Wilson, R. G. 1995. Response of sugarbeet, common sunflower, and common cocklebur to clopyralid or desmedipham plus phenmedipham. J. Sugar Beet Res. 32:8997.Google Scholar
Windels, C. E., Jacobsen, B. J., and Harveson, R. M. 2009. Rhizoctonia root and crown rot. Pages 3336 in Harveson, R. M., Hanson, L. E., and Hein, G. L., eds. Compendium of Beet Diseases and Pests. 2nd ed. St. Paul, MN APS.Google Scholar