Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T03:39:33.391Z Has data issue: false hasContentIssue false

Gene flow from imidazolinone-resistant domesticated sunflower to wild relatives

Published online by Cambridge University Press:  20 January 2017

Rafael A. Massinga
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506-5501
Paul St. Amand
Affiliation:
Department of Agronomy, Kansas State University, Manhattan, KS 66506-5501
Jerry F. Miller
Affiliation:
USDA-ARS, Northern Crop Science Laboratory, Fargo, ND 58105

Abstract

Gene flow from imidazolinone (IMI)-resistant domestic sunflower to IMI-susceptible common sunflower and prairie sunflower was studied. Under greenhouse conditions, pollen from IMI-resistant domesticated sunflower was applied to flower heads of IMI-susceptible common and prairie sunflower. In addition, field studies were conducted in 2000 and 2001 near Manhattan, KS, to evaluate IMI-resistant gene flow from IMI-resistant domesticated sunflower to common and prairie sunflower under natural conditions. Common and prairie sunflower were planted in concentric circles at distances of 2.5, 5, 15, and 30 m around a densely planted IMI-resistant domesticated sunflower species. For both greenhouse and field studies, IMI-resistant gene flow was determined by treating the progeny of both wild species with 40 g ai ha−1 of imazamox. Greenhouse crosses made by hand showed that 94% of common sunflower and 79% of prairie sunflower were resistant or moderately resistant. The resistant plants were allowed to grow in the greenhouse and were backcrossed with the corresponding susceptible wild parents. Progeny of the backcross showed a 1:1 ratio of resistant to susceptible plants. In the field, gene flow was detected up to 30 m from the pollen source for both species, and it decreased as distance from the pollen source increased. In 2000, 11 to 22% of the progeny were resistant at 2.5 m from the pollen source and 0.3 to 5% were resistant at 30 m. In 2001, the number of resistant progeny did not exceed 7 and 2% at 2.5 and 30 m from the pollen source, respectively. The results of this study showed that IMI-resistant domesticated sunflower outcrosses with common and prairie sunflower over distances typically encountered near production fields. Also, backcrosses of resistant hybrids with wild parents are successful, further increasing the potential for the spread of IMI-resistant feral sunflowers.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alcocer-Ruthling, M., Thill, D. C., and Shaffii, B. 1992. Differential competitiveness of sulfonylurea resistant and susceptible prickly lettuce (Lactuca serriola). Weed Technol 6:303309.CrossRefGoogle Scholar
Al-Khatib, K., Baumgartner, J. R., Peterson, D. E., and Currie, R. S. 1998. Imazethapyr resistance in common sunflower (Helianthus annuus). Weed Sci 46:403407.CrossRefGoogle Scholar
Al-Khatib, K. and Miller, J. F. 1998. Progress in development Pursuit/Raptor herbicide resistant sunflower. Proc. Natl. Sunfl. Assoc 20:5659.Google Scholar
Al-Khatib, K. and Miller, J. F. 2000. Registration of four genetic stocks of sunflower resistant to imidazolinone herbicides. Crop Sci 40:869870.Google Scholar
Arias, D. M. and Rieseberg, L. H. 1994. Gene flow between cultivated and wild sunflowers. Theor. Appl. Genet 89:655660.CrossRefGoogle ScholarPubMed
Arriola, P. E. and Ellstrand, N. C. 1996. Crop-to-weed gene flow in the genus Sorghum (Poaceae): spontaneous interspecific hybridization between johnsongrass, Sorghum halepense, and crop sorghum, S. bicolor . Am. J. Bot 83:11531160.CrossRefGoogle Scholar
Arriola, P. E. and Ellstrand, N. C. 1997. Fitness of interspecific hybrids in the genus Sorghum (Poaceae): persistence of crop genes in wild populations. Ecol. Appl 7:512518.CrossRefGoogle Scholar
Barret, S. C. H. 1983. Crop mimicry in weeds. Econ. Bot 37:255282.CrossRefGoogle Scholar
BASF. 2001. CLEARFIELD Hybrids with no GMO Traits. http://www.clearfieldsystem.com/html/gmo.html.Google Scholar
Beversdorf, W. D., Hume, D. J., and Donnelly-Vanderloo, M. J. 1988. Agronomic performance of triazine-resistant and susceptible reciprocal spring canola hybrids. Crop Sci 28:932934.CrossRefGoogle Scholar
Brown, J. and Brown, A. P. 1996. Gene transfer between canola (Brassica napus L. and B. campestris L.) and related weed species. Ann. Appl. Biol 129:513522.CrossRefGoogle Scholar
Brown, J., Thill, D. C., Mallory-Smith, C., Brown, A. P., Brammer, T. A., and Nair, H. S. 1995. Gene transfer between canola (Brassica napus) and related weed species. Pages 5574 in Proceedings of USDA/ARS Biological Risk Conference. Biotechnology Risk Assessment. Pensacola, FL: USEPA/USDA/Environment Canada/Agriculture and Agriculture Food Canada, USDA/ARS.Google Scholar
Bruniard, J. M. and Miller, J. F. 2001. Inheritance of imidazolinone-herbicide resistance in sunflower. Helia 24:1116.CrossRefGoogle Scholar
Chandler, J. M., Jan, C. C., and Beard, B. H. 1986. Chromosomal differentiation among the annual Helianthus species. Syst. Bot 11:353371.CrossRefGoogle Scholar
Colwell, R. E., Norse, E. A., Pimentel, D., Sharples, F. E., and Simberloff, D. 1985. Genetic engineering in agriculture. Science 229:111112.CrossRefGoogle ScholarPubMed
Conard, S. G. and Radosevich, S. R. 1979. Ecological fitness of Senecio vulgaris and Amaranthus retroflexus biotype susceptible or resistant to atrazine. J. Appl. Ecol 16:171177.CrossRefGoogle Scholar
Darmency, H. and Pernes, J. 1989. Agronomic performance of triazine resistant foxtail millet (Setaria italica) (L.) Beauv. Weed Res 29:147150.CrossRefGoogle Scholar
Desrochers, A. and Rieseberg, L. H. 1998. Mentor effects in wild species of Helianthus (Asteraceae). Am. J. Bot 85:770775.CrossRefGoogle ScholarPubMed
Duke, S. O. 1996. Will herbicide resistance ultimately benefit agriculture?. Pages 322330 in Prado, R. D., Jorrin, J., and Garcia-Torres, L. eds. Weed and Crop Resistance to Herbicides. Dordrecht, The Netherlands: Kluwer Academic.Google Scholar
Dyer, W. E., Chee, P. W., and Fay, P. K. 1993. Rapid germination of sulfonylurea resistant Kochia scoparia L. accessions is associated with elevated seed levels of branched chain amino acids. Weed Sci 41:1822.CrossRefGoogle Scholar
Ellstrand, N. C. 1988. Pollen as vehicle for the escape of engineered genes. Trends Ecol. Evol 3:3032.CrossRefGoogle ScholarPubMed
Ellstrand, N. C., Prentice, H. C., and Hancock, J. F. 1999. Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst 30:539563.CrossRefGoogle Scholar
Fick, G. N. 1978. Breeding and genetics. Pages 395428 in Carter, J. F. ed. Sunflower Science and Technology. Agronomy Monograph 19. Madison, WI: ASA, CSSA, and SSSA.Google Scholar
Forcella, F. 1987. Herbicide-resistant crops: yield penalties and weed thresholds for oil seed rape (Brassica napus L). Weed Res 27:3134.CrossRefGoogle Scholar
Hall, L., Topinka, K., Huffman, J., Davis, L., and Good, A. 2000. Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci 48:688694.CrossRefGoogle Scholar
Holt, J. S. 1988. Reduced growth, competitiveness, and photosynthesis efficiency of triazine resistant Senecio vulgaris from California. J. Appl. Ecol 25:307318.CrossRefGoogle Scholar
Holt, J. S. and Thill, D. C. 1994. Growth and productivity of resistant plants. Pages 299316 in Powles, S. B. and Holtrum, J.A.M. eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton FL: Lewis.Google Scholar
James, C. 2001. Global Status of Commercialized Transgenic Crops. ISAAA Briefs No. 21: Preview. Ithaca, NY: ISAAA. http://www.Isaaa.org/publication/briefs/Brief_21.htm.Google Scholar
Keeler, K. H. and Turner, C. E. 1990. Management of transgenic plants in the environment. Pages 189218 in Levin, M. and Strauss, H. eds. Risk Management in Genetic Engineering: Environmental Release of Organisms. New York: McGraw-Hill.Google Scholar
Klinger, T., Arriola, P. E., and Ellstrand, N. C. 1992. Crop-weed hybridization in radish (Rhaphanus sativus L.): effects of distance and population size. Am. J. Bot 79:14311435.CrossRefGoogle Scholar
Klinger, T., Elam, D. R., and Ellstrand, N. C. 1991. Radish as a model system for the study of engineered gene escape rates via crop-weed mating. Conserv. Biol 5:531535.CrossRefGoogle Scholar
Langevin, S. A., Clay, K., and Grace, J. 1990. The incidence and effects of hybridization between cultivated rice and its related weed red rice (Oryza sativa L). Evolution 44:10001008.CrossRefGoogle ScholarPubMed
Mallory-Smith, C. A. and Eberlein, C. V. 1996. Possible pleitropic effects in herbicide resistant crops. Pages 201210 in Duke, S. O. ed. Herbicide Resistant Crops. Boca Raton, FL: Lewis.Google Scholar
Manasse, R. S. 1992. Ecological risks of transgenic plants: effects of spatial dispersion of gene flow. Ecol. Appl 2:431438.CrossRefGoogle ScholarPubMed
Marshall, M. W., Al-Khatib, K., and Loughin, T. 2001. Gene flow, growth, and competitiveness of imazethapyr resistant common sunflower. Weed Sci 49:1421.CrossRefGoogle Scholar
Maxwell, B. D. and Mortimer, A. 1994. Selection for herbicide resistance. Pages 126 in Powles, S. and Holtum, J.A.M. eds. Herbicides Resistance in Plants: Biology and Biochemistry. Boca Raton, FL: CRC.Google Scholar
Mikkelsen, T. R., Andersen, B., and Jorgensen, R. B. 1996. The risk of crop transgene spread. Nature 380:31.CrossRefGoogle Scholar
Miller, J. F. 1987. Sunflower. Pages 626668 in Fehr, W. R. ed. Principles of Cultivar Development. Volume 2. New York: Macmillan.Google Scholar
Miller, J. F. and Al-Khatib, K. 2002. Registration of imidazolinone herbicide-resistant sunflower maintainer (HA 425) and fertility restorer (RHA 426 and RHA 427) germoplasms. Crop Sci 42:988989.CrossRefGoogle Scholar
Ott, R. L. 1993. An Introduction to Statistical Methods and Data Analysis. Belmont, CA: Wadsworth Publishing Company. Pp. 146155.Google Scholar
Panetsos, C. A. and Baker, H. G. 1967. The origin of variation in “wild” Rhaphanus sativus (Cruciferae) in California. Genetics 38:243274.Google Scholar
Paterson, H. P., Schertz, K. F., Lin, Y., and Chang, Y. 1995. The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass (Sorghum halepense L). Proc. Natl. Acad. Sci 92:61276131.CrossRefGoogle ScholarPubMed
Rieseberg, L. H., Baird, S. J. E., and Desrochers, A. M. 1998. Patterns of mating in wild sunflower hybrid zones. Evolution 52:713726.CrossRefGoogle ScholarPubMed
Rieseberg, L. H., Desrochers, A. M., and Youn, S. J. 1995b. Interspecific pollen competition as a reproductive barrier between sympatric species of Helianthus (Asteraceae). Am. J. Bot 82:515519.CrossRefGoogle Scholar
Rieseberg, L. H., Linder, C. R., and Seiler, G. 1995a. Chromosomal and genic barriers to introgression in Helianthus . Genetics 141:11631171.CrossRefGoogle ScholarPubMed
Rieseberg, L. H., Whitton, J., and Gardner, K. 1999. Hybrid zones and genetic architecture of barrier to gene flow between two sunflower species. Genetics 152:713727.CrossRefGoogle ScholarPubMed
Ritala, A., Nuutila, A. M., Aikasalo, R., Kauppinen, V., and Tammisola, J. 2002. Measuring gene flow in the cultivation of transgenic barley. Crop Sci 42:278285.CrossRefGoogle ScholarPubMed
Rogers, C. E., Thompson, T. E., and Seiler, G. J. 1982. Sunflower Species of the United States. Bismarck, ND: National Sunflower Association. Pp. 463.Google Scholar
Schilling, E. E. and Heiser, C. B. 1981. Intrageneric classification of Helianthus (Compositae). Taxon 30:393403.CrossRefGoogle Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol 9:218227.CrossRefGoogle Scholar
Seefeldt, S. S., Zemetra, R., Young, F. L., and Jones, S. S. 1998. Production of herbicide-resistant jointed goatgrass (Aegilops cylindrical) × wheat (Triticum aestivum) hybrids in the field by natural hybridization. Weed Sci 46:632634.CrossRefGoogle Scholar
Seiler, G. J. 1997. Anatomy and morphology of sunflower. Pages 67111 in Schneiter, A. A. ed. Sunflower Technology and Production. Agronomy Monograph 35. Madison, WI: ASA, CSSA, and SSSA.Google Scholar
Seiler, G. J. and Rieseberg, L. H. 1997. Systematics, origin, and germplasm resources of the wild and domesticated sunflower. Pages 2165 in Schneiter, A. A. ed. Sunflower Technology and Production. Agronomy Monograph 35. Madison, WI: ASA, CSSA, and SSSA.Google Scholar
Snow, A. A. and Moran-Palma, P. 1996. Commercial cultivation of transgenic crops: potential ecological risks. Bioscience 47:8697.CrossRefGoogle Scholar
Snow, A. A., Moran-Palma, P., Rieseberg, L. H., Wszelaki, A., and Seiler, G. J. 1998. Fecundity, phenology and seed dormancy of F1 wild–crop hybrids in sunflower (Helianthus annuus, Asteraceae). Am. J. Bot 85:794801.CrossRefGoogle ScholarPubMed
Whitton, D., Wolf, E., Arias, D. M., Snow, A. A., and Rieseberg, L. H. 1997. The persistence of cultivar alleles in wild populations of sunflowers five generations after hybridization. Theor. Appl. Genet 95:3340.CrossRefGoogle Scholar