Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T19:59:06.833Z Has data issue: false hasContentIssue false

Factors Affecting the Phytotoxicity of Norflurazon

Published online by Cambridge University Press:  12 June 2017

Chi-Chu Lo
Affiliation:
Dep. Soil and Crop Sci., Texas A&M Univ., College Station, TX 77843
Morris G. Merkle
Affiliation:
Dep. Soil and Crop Sci., Texas A&M Univ., College Station, TX 77843

Abstract

Norflurazon [4-chloro-5-(methylamino)-2-(α,α,α-trifluoro-m-tolyl)-3(2H)-pyridazinone] decreased the total chlorophyll content and the chlorophyll a/b ratio of nine plant species. Grain sorghum [Sorghum bicolor (L.) Moench.], wheat (Triticum aestivum L.), and sicklepod (Cassia obtusifolia L. ♯3 CASOB) were the most susceptible plants, and cotton (Gossypium hirsutum L.) was the most tolerant. The soil properties most closely correlated with norflurazon activity were organic matter content and clay component, not clay content. A high treatment rate was necessary for effective control of plant growth in soil high in organic matter content and high in montmorillonite or vermiculite. Approximately twice as much norflurazon was required to reduce chlorophyll content 50% when applied to the soil preplant incorporated as was required when applied preemergence.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1984 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris . Plant Physiol. 24:115.CrossRefGoogle ScholarPubMed
2. Bartels, P. G. and Watson, C. W. 1978. Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Sci. 26:198203.CrossRefGoogle Scholar
3. Bidwell, R. G. S. 1979. Polymers and large molcules. Pages 228246 in Bidwell, R. G. S. Plant Physiology. 2nd ed. Macmillan Publishing Co., New York.Google Scholar
4. Eder, F. A. 1979. Pyridazinones, their influence on the biosynthesis of carotenoids and the metabolism of lipids in plants. Z. Naturforsch. 34C:10521054.CrossRefGoogle Scholar
5. Fischer, A. 1962. 1-phenyl-4-amino-5-chlor-pyridazon-6 (PCA). Weed Res. 2:177184.CrossRefGoogle Scholar
6. Green, R. E. and Obien, S. R. 1969. Herbicide equilibrium in soils in relation to soil water content. Weed Sci. 17:514519.CrossRefGoogle Scholar
7. Hilton, J. L., Scharen, A. L., St. John, J. B., Moreland, D. E., and Norris, K. H. 1969. Modes of action of pyridazinon herbicides. Weed Sci. 17:541547.CrossRefGoogle Scholar
8. Kunert, K. J. and Boger, P. 1979. Influence of bleaching herbicides on chlorophyll and carotenoids. Z. Naturforsch. 34C:10471051.CrossRefGoogle Scholar
9. Lichtenthaler, H. K. and Kleudgen, H. K. 1977. Effect of the herbicide SAN 6706 on biosynthesis of photosynthetic pigments and prenylquinones in Raphanus and in Hordeum seedlings. Z. Naturforsch. 32C:236240.CrossRefGoogle Scholar
10. Motooka, P. S., Corbin, F. T., and Worsham, A. D. 1977. Uptake and translocation of Sandoz 6706 in soybean and sicklepod. Weed Sci. 25:3035.CrossRefGoogle Scholar
11. Sandmann, G., Bramley, P. M., and Boger, P. 1980. The inhibitory mode of action of the pyridazinone herbicide norflurazon on a cell-free carotenogenic enzyme system. Pestic. Biochem. Physiol. 14:185191.CrossRefGoogle Scholar
12. Smith, J. H. C. and French, C. S. 1963. The major and accessory pigments in photosynthesis. Annu. Rev. Plant Physiol. 14:181225.CrossRefGoogle Scholar
13. St. John, J. B. 1976. Manipulation of galactolipid fatty acid composition with substituted pyridazinones. Plant Physiol. 57:3840.CrossRefGoogle Scholar
14. St. John, J. B. and Hilton, J. L. 1976. Structure versus activity of substituted pyridazinones as related to mechanism of action. Weed Sci. 24:579582.CrossRefGoogle Scholar
15. Strang, R. H. and Rogers, R. L. 1974. Behavior and fate of two phenylpyridazinone herbicides in cotton, corn, and soybean. J. Agric. Food Chem. 22:11191125.CrossRefGoogle ScholarPubMed
16. Strang, R. H. and Rogers, R. L. 1975. Translocation of 14C-SAN 6706 in cotton, soybean, and corn. Weed Sci. 23:2631.CrossRefGoogle Scholar
17. Streibig, J. C. 1982. Relationship between soil-applied pyrazon and content in soil solution. Weed Sci. 30:527531.CrossRefGoogle Scholar
18. Talbert, R. E. and Kennedy, M. R. 1978. Soil factors affecting the adsorption and activity of norflurazon. Abstr., Weed Sci. Soc. Am. p. 114.Google Scholar
19. Weed Science Society of America. 1983. Herbicide Handbook, 5th ed. Weed Science Society of America, Champaign, Illinois. 515 pp.Google Scholar
20. Urbach, D., Suchanka, M., and Urbach, W. 1976. Effect of substituted pyridazinone herbicides and of difunone (EMD-IT 5914) on carotenoid biosynthesis in green algae. Z. Naturforsch. 31C:652655.CrossRefGoogle Scholar
21. Winkler, V. W., Patel, J. R., Januszanis, M., and Colarusso, M. 1981. Determination of norflurazon residues in mixed crop matrices. J. Assoc. Off. Anal. Chem. 64:13091311.Google ScholarPubMed