Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T03:21:48.717Z Has data issue: false hasContentIssue false

Evidence of High Gene Flow Between Samples of Horseweed (Conyza canadensis) and Hairy Fleabane (Conyza bonariensis) as Revealed by Isozyme Polymorphisms

Published online by Cambridge University Press:  20 January 2017

Alaim Anderson Fernandes Soares
Affiliation:
Department of Biotechnology, Genetics and Cell Biology
Angela Maria Dalla Torre Fregonezi
Affiliation:
Department of Biotechnology, Genetics and Cell Biology
Denis Bassi
Affiliation:
Department of Biotechnology, Genetics and Cell Biology
Claudete Aparecida Mangolin
Affiliation:
Department of Biotechnology, Genetics and Cell Biology
Sandra Aparecida de Oliviera Collet
Affiliation:
Department of Biotechnology, Genetics and Cell Biology
Rubem Silvério de Oliveira Junior
Affiliation:
Department of Agronomy, State University of Maringa, Maringa-PR., Brazil
Maria de Fátima Pires da Silva Machado*
Affiliation:
Department of Biotechnology, Genetics and Cell Biology
*
Corresponding author's E-mail: [email protected]

Abstract

Native polyacrylamide gel electrophoresis was used to identify polymorphisms in α- and β-esterases loci and electrophoresis in starch gel to identify polymorphism in malate dehydrogenase (MDH; EC 1.1.1.37) and acid phosphatase (ACP; EC 3.1.3.2) isozymes loci in leaf tissues from samples of horseweed and hairy fleabane populations to determine genetic diversity and population structure. Similar or differential genetic divergence between the two species may guide specific use of herbicides. For samples of plants with high genetic similarity it is possible to adopt similar mechanisms and processes for their control. The proportion of polymorphic loci was 57.14, 50.0, and 53.6%, in samples of horseweed and hairy fleabane, for EST, MDH, and ACP isozymes, respectively. A comparison of the diversity parameters in the two species showed that the number of alleles is similar in the horseweed and hairy fleabane plants. The estimated heterozygosity in horseweed and hairy fleabane was also very close. A relatively low level of population differentiation was detected between horseweed and hairy fleabane (FST = 0.0199), which suggests a substantial genetic exchange among the two species. Accordingly, estimate of gene flow was high (Nm = 12.3172) for the alleles of the loci Est, Mdh, and Acp. The Nei's identity (I) values also was high (I = 0.9561) indicating very high similarity between the two Conyza species. AMOVA showed higher genetic variation within (95%) than among (5%) the two samples. The low genetic structure and high value of genetic identity was an important indication that alleles are exchanged between horseweed and hairy fleabane populations, and provides additional evidence of occurrence of outcrossing between populations or dispersion of samples of one for other site.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allendorf, FW, Luikart, G (2007) Conservation and the genetics of populations. Blackwell Publishing, Malden. 642 pGoogle Scholar
Carvalho, VM, Marochio, CA, Mangolin, CA, Machado, MFPS (2011) The use of esterase polymorphism for analysis of the genetic diversity and structure of stevia (Stevia rebaudiana Bert. Bertoni) populations. Biochem Syst Ecol. 39:594599 Google Scholar
Carvalho, VM, Marques, RM, Lapenta, AS, Machado, MFPS (2003) Functional classification of esterases from leaves of Aspidosperma polyneuron M. Arg. (Apocynaceae). Genet Mol Biol. 26:195198 Google Scholar
Ferrer, MM, Good-Avila, SV (2007) Macrophylogenetic analyses of the gain and loss of self-incompatibility in the Asteraceae. New Phytologist. 173:401414 Google Scholar
Frankton, C, Mulligan, GA (1987) Weeds of Canada (revised). Publication 948. Ministry of Supply and Services Canada. NC Press Limited, Toronto, ON Frankton and Mulligan. 217 pGoogle Scholar
Frigo, MJ, Mangolin, CA, Oliveira, RS Jr., Machado, MFPS (2009) Esterase polymorphism for analysis of genetic diversity and structure of wild poinsettia (Euphorbia heterophylla) populations. Weed Sci. 57:5460 Google Scholar
González-Torralva, F, Cruz-Hipolito, H, Bastida, F, Mülleder, N, Smeda, RJ, Prado, R (2010) Differential susceptibility to glyphosate among the Conyza weed species in Spain. J Agric Food Chem. 58:43614366 Google Scholar
Govindaraju, DR (1989) Variation in gene flow levels among predominantly self-pollinated plants. J Evol Biol. 2:173181 Google Scholar
Guareschi, A, Pastori, T, Kruse, ND, Machado, SLO, Dorow, TSC, Tedesco, SB (2012) Cytogenetics characterization of Conyza bonariensis (L.) Cronquist populations from Brazil. Ciência e Natura. 34:3948 Google Scholar
Heap I. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed September 8, 2014Google Scholar
Jorge, IC, Mangolin, CA, Machado, MFPS (1997) Malate dehydrogenase isozymes (MDH; EC 1.1.1.37) in long-term callus culture of Cereus peruvianus (Cactaceae) exposed to sugar and temperature stress. Biochem Genet. 35:155164 Google Scholar
Kissmann, KG, Groth, D (1999) Plantas Infestantes e Nocivas. 2th ed. São Bernardo do Campo Basf. Pp 152156, 278–284Google Scholar
Lamego, FP, Vidal, RA (2008) Resistência ao glyphosate em biótipos de Conyza bonariensis e Conyza canadensis no Estado do Rio Grande do Sul, Brasil. Planta Daninha. 26:467471 Google Scholar
Lazaroto, CA, Fleck, NG, Vidal, RA (2008) Biologia e ecofisiologia de buva (Conyza bonariensis e Conyza canadensis). Ciência Rural. 38:852860 Google Scholar
Lopes, R, Bruckner, CH, Lopes, MTG (2002) Polimorfismo isozimático e potencial de utilização das isozimas como marcadores genéticos em aceroleira. Pesq Agropec Brasil. 37:151158 Google Scholar
Machado, MFPS, Prioli, AJ, Mangolin, CA (1993) Malate dehydrogenase (MDH; EC 1.1.1.37) isozymes in tissue and callus cultures of Cereus peruvianus (Cactaceae). Biochem Genet. 31:167172 Google Scholar
Main, CL, Mueller, TC, Hayes, RM, Wilkerson, JB (2004) Response of selected Horseweed (Conyza canadensis (L.) Cronq.) populations to glyphosate. J Agric Food Chem. 52:879883 Google Scholar
Mangolin, CA, Prioli, AJ, Machado, MFPS (1997) Isozyme variability in plants regenerated from calli of Cereus peruvianus (Cactaceae). Biochem Genet. 35:189204 Google Scholar
McClintock, D, Marshall, JB (1988) On Conyza sumatrensis (Retz) E. Walker and certain hybrids in the genus. Watsonia. 17:172173 Google Scholar
Mendes, S, Portugal, J, Calha, I (2012) Glyphosate resistance survey on Conyza canadensis . Revista de Ciências Agrárias. 35:322328 Google Scholar
Moreira, MS, Melo, MSC, Carvalho, SJO, Nicolai, M, Christoffoleti, PJ (2010) Herbicidas alternativos para controle de biótipos de Conyza bonariensis e C. canadensis resistentes ao glyphosate. Planta Daninha. 28:167175 Google Scholar
Moreira, MS, Nicolai, M, Carvalho, SJP, Christoffoleti, PJ (2007) Glyphosate-resistance in Conyza canadensis and C. bonariensis . Planta Daninha. 25:157164 Google Scholar
Mulligan, GA, Findlay, JN (1970) Reproductive systems and colonization in Canadian weeds. Can J Bot. 5:859860 Google Scholar
Nei, M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA. 70:33213323 Google Scholar
Newton, KJ (1983) Genetics of mitochondrial isozymes. Pages 159176 in Tanksley, SD, Orton, TJ, eds. Isozymes in Plant Genetics and Breeding, Part A. New York Elsevier Science Google Scholar
Okada, M, Hanson, BD, Hembree, KJ, Peng, Y, Shrestha, A, Stewart, CN Jr., Wright, SD, Jasieniuk, M (2013) Evolution and spread of glyphosate resistance in Conyza canadensis in California. Evolutionary Applications. 6:761777 Google Scholar
Oliveira Neto, AM, Constantin, J, Oliviera, RS Jr., Guerra, N, Dan, HA, Alonso, DG, Blainski, E, Santos, G (2010) Winter and summer management strategies for Conyza bonariensis and Bidens pilosa control. Planta Daninha. 28:11071116 Google Scholar
Orasmo, GR, Collet, SAO, Lapenta, AS, Machado, MFPS (2007) Biochemical and genetic polymorphisms for carboxylesterase and acetylesterase in grape clones of Vitis vinifera L. (Vitaceae) cultivars. Biochem Genet. 45:663670 Google Scholar
Paula, JM, Vargas, L, Agostinetto, D, Nohatto, MA (2011) Management of glyphosate-resistant Conyza bonariensis . Planta Daninha. 29:217227 Google Scholar
Peakall, R, Smouse, PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 6:288295 Google Scholar
Penha, ETS, Aparecido, LEO, Souza, PS, Souza, CAS (2012) Aplicação de doses do herbicida glyphosate no controle da Conyza bonariensis . Rev Agrogeoambiental. 4:16 Google Scholar
Pereira, AJ, Lapenta, AS, Vidigal-Filho, PS, Machado, MFPS (2001) Differential esterase expression in leaves of Manihot esculenta Crantz infected with Xanthomonas axonopodis pv. Manihotis. Biochem Genet. 39:289296 Google Scholar
Pereira, LK, Mangolin, CA, Scapim, CA, Pacheco, CAP, Bonato, CM, Machado, MFPS (2006) Malate dehydrogenase isozyme patterns in four cycles of half-sib selection from CMS-43 popcorn variety (Zea mays L.). Maydica. 51:561566 Google Scholar
Prado, R (1987) Group C1/5 resistant hair fleabane (Conyza bonariensis) . The international survey of herbicide resistant weeds. http://www.weedscience.org. Accessed February 20, 2014Google Scholar
Resende, AG, Vidigal-Filho, PS, Machado, MFPS (2000) Isozyme diversity in cassava cultivars (Manihot esculenta Crantz). Biochem Genet. 38:203211 Google Scholar
Sala, J, Mangolin, CA, Franzoni, J, Machado, MFPS (2011) Esterase polymorphism and the analysis of genetic diversity and structure in cactus populations descended from Cereus peruvianus plants regenerated in vitro. Biochem Genet. 49:270282 Google Scholar
Smisek, AJ (1995) The evolution of resistance to paraquat in populations of Erigeron canadensis L. . London, Ontario University of Western Ontario. 102 pGoogle Scholar
Thebaud, C, Abbott, RJ (1995) Characterization of invasive Conyza species (Asteraceae) in Europe: quantitative trait and isozyme analysis. Am J Bot. 3:360368 Google Scholar
Thorpe, JP, Solé-Cava, AM (1994) The use of allozyme electrophoresis in invertebrate systematic. Zoologica Scripta. 23:318 Google Scholar
Trezzi, MM, Vidal, RA, Xavier, E, Rosin, D, Balbinot, AA, Prates, MA (2011) Resistance to glyphosate in Conyza spp. biotypes in Western and Southwestern Parana, Brazil. Planta Daninha. 29:11131120 Google Scholar
Urdampilleta, JD, Amat, AG, Bidau, C (2005) Karyotypic studies and morphological analysis of reproductive features in five species of Conyza (Astereae: Asteraceae) from Northwestern Argentina. Bol Soc Argent Bot. 40:9199 Google Scholar
Vargas, L, Bianchi, MA, Rizzardi, MA, Agostinetto, D, Dal Magro, T (2007) Conyza bonariensis biotypes resistant to the glyphosate in Southern Brazil. Planta Daninha. 25:573578 Google Scholar
Vidal, RA, Fleck, NC (1997) Análise do risco da ocorrência de biótipos de plantas daninhas resistentes aos herbicidas. Planta Daninha. 15:152161 Google Scholar
Weaver, SE (2001) The biology of Canadian weeds; Conyza canadensis . Canadian J Plant Sci. 4:867875 Google Scholar
Wright, S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution. 19:395399 Google Scholar
Wright, S (1978) Evolution and the Genetics of Population, Variability Within and Among Natural Populations. Chicago University of Chicago Press, 590 pGoogle Scholar
Xiao-ling, S, Jia-jun, W, Hong-jun, Z, Sheng, Q (2011) Occurrence of glyphosate-resistant horseweed (Conyza canadensis) population in China. Agricult Sci China. 10:10491055 Google Scholar
Yamauti, MS, Barroso, AAM, Souza, MC, Alves, PLCA (2010) Chemical control of glyphosate-resistant horseweed (Conyza canadensis) and hairy fleabane (Conyza bonariensis) biotypes. Rev Cienc Agron. 41:495500 Google Scholar
Yeh, FC, Yang, R, Boyle, T (1999) Popgene version 1.32: Microsoft Windows-based freeware for population genetic analysis. Calgary, AB Centre for International Forestry Research, University of Alberta Google Scholar
Zelaya, I, Owen, MDK, VanGessel, MJ (2004) Inheritance of evolved glyphosate resistance in Conyza canadensis (L.) Cronq. Theor Appl Gen. 110:5870 Google Scholar
Zelaya, IA, Owen, MDK, VanGessel, MJ (2007) Transfer of glyphosate resistance: evidence of hybridization in Conyza (Asteraceae). Am J Bot. 94:660673 Google Scholar
Zheng, D, Kruger, GR, Singh, S, Davis, VM, Tranel, PJ, Weller, SC, Johnson, WG (2011) Cross-resistance of horseweed (Conyza canadensis) populations with three different ALS mutations. Pest Manag Sci. 67:14861492 Google Scholar