Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T06:33:38.277Z Has data issue: false hasContentIssue false

Evaluation of Factors That Influence Benghal Dayflower (Commelina benghalensis) Seed Germination and Emergence

Published online by Cambridge University Press:  20 January 2017

Mercy H. Sabila
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602
Timothy L. Grey*
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Tifton, GA 31793-0748
Theodore M. Webster
Affiliation:
Crop Protection and Management Research Unit, USDA–Agricultural Research Service, Tifton, GA 31794
William K. Vencill
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602
Donn G. Shilling
Affiliation:
Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602
*
Corresponding author's E-mail: [email protected]

Abstract

A perennial species in its native range of Asia and Africa, Benghal dayflower in North America establishes annually from seed. This species has the unique ability to produce aerial and subterranean flowers and seeds. Information on how various environmental factors affect Benghal dayflower aerial and subterranean seed germination and emergence in the United States is lacking. Studies were conducted to determine the effect of temperature, planting depth, salt concentration, and pre-emergence herbicides on germination or emergence of aerial and subterranean Benghal dayflower seed. Maximum aerial seed germination occurred at 30 C, whereas maximum subterranean seed germination occurred at 30 and 35 C. Germination at 40 C was delayed relative to optimum temperatures. The seed coats in this study were mechanically disrupted to evaluate the response of seeds to temperature in the absence of physical dormancy. The physical dormancy imposed by the seed coat could require additional study. Benghal dayflower was not tolerant to ≥ 10 mM NaCl, indicating that this exotic species is not likely to become problematic in brackish marshes and wetlands of coastal plain regions. There was an inverse linear response of Benghal dayflower emergence and planting depth, with no emergence occurring at a planting depth of 12 cm. A field survey of Benghal dayflower emergence revealed that 42% of plants established from a depth of 1 cm in the soil profile, with 7 cm being the maximum depth from which seedlings plants could emerge. This suggests that PRE herbicides must remain in the relatively shallow depths of the soil profile to maximize control of germinating seedlings. Subterranean seeds were less sensitive than aerial seeds to S-metolachlor, the primary means of controlling this species in cotton. There were no differences between the germination of aerial and subterranean seed in response to treatment with diclosulam.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Biswas, P. K., Bell, P. D., Crayton, J. L., and Paul, K. B. 1975. Germination behavior of Florida pusley (Richardia scabra) seeds. I. Effects of storage, light, temperature and planting depths on germination. Weed Sci. 23:400403.Google Scholar
Brecke, B. J. 1995. Wild poinsettia (Euphorbia heterophylla) germination and emergence. Weed Sci. 43:103106.Google Scholar
Brecke, B. J., Stephenson, D. O., and Hutto, K. 2005. Impact of tillage and herbicides on tropical spiderwort. Proceedings of the Tropical Spiderwort Symposium, Tifton, GA, November 29, 2005. http://mulch.cropsoil.uga.edu/weedsci/tsw2005/index.html. Accessed: February 14, 2011.Google Scholar
Budd, G. D., Thomas, P. E. L., and Allison, J. C. S. 1979. Vegetative regeneration, depth of germination and seed dormancy in Commelina benghalensis L. Rhodesian J. Agric. Res. 17:151153.Google Scholar
Burke, I. C., Thomas, W. E., Spears, J. F., and Wilcut, J. W. 2003. Influence of environmental factors on broadleaf signalgrass (Brachiaria platyphylla) germination. Weed Sci. 51:683689.Google Scholar
Burns, J. H. 2004. A comparison of invasive and non-invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients. Divers. Distrib. 10:387397.Google Scholar
Burns, J. H. 2006. Relatedness and environment affect traits associated with invasive and noninvasive introduced commelinaceae. Ecol. Appl. 16:13671376.Google Scholar
Cardina, J. and Hook, J. E. 1989. Factors influencing germination and emergence of Florida beggarweed (Desmodium tortuosum). Weed Technol. 3:402407.Google Scholar
Chambers, R. M., Meyerson, L. A., and Saltonstall, K. 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquat. Bot. 64:261273.Google Scholar
Chauhan, B. S., Gill, G., and Preston, C. 2006. Influence of environmental factors on seed germination and seedling emergence of rigid ryegrass (Lolium rigidum). Weed Sci. 54:10041012.Google Scholar
Chauhan, B. S. and Johnson, D. E. 2008. Influence of environmental factors on seed germination and seedling emergence of eclipta (Eclipta prostrata) in a tropical environment. Weed Science. 56:383388.Google Scholar
Chivinge, O. A. and Kawisi, M. 1989. The effect of node numbers in the regeneration of wandering jew (Commelina benghalensis L.). Zimbabwe J. Agric. Res. 27:131138.Google Scholar
Culpepper, A. S., Flanders, J. T., York, A. C., and Webster, T. M. 2004. Tropical spiderwort (Commelina benghalensis) control in glyphosate-resistant cotton. Weed Technol. 18:432436.Google Scholar
Dias, A. C. R., Carvalho, S. J. P., Brancalion, P. H. S., Novembre, A. D. L. C., and Christoffoleti, P. J. 2009. Germination of small Bengal dayflower (Commelina benghalensis) aerial seeds. Planta Daninha. 27:931939.Google Scholar
Eastin, E. F. 1983. Smallflower morningglory (Jacquemontia tamnifolia) germination as influenced by scarification, temperature, and seeding depth. Weed Sci. 31:727730.Google Scholar
Faden, R. B. 1993. The misconstrued and rare species of Commelina (Commelinaceae) in the eastern United States. Ann. Mo. Bot. Gard. 80:208218.Google Scholar
Faden, R. B. 2000. Commelina. Pages 192197 in Morin, N. R., ed. Flora of North America. New York Oxford University Press.Google Scholar
Ferreira, M. I. and Reinhardt, C. F. 1999. The role of temperature in the germination of subterranean and aerial seeds of Commelina benghalensis L. S. Af. J. Plant Soil. 16:165168.Google Scholar
Flanders, J. T. and Prostko, E. P. 2004. Continued investigations on the control of tropical spiderwort. Am. Peanut Res. Educ. Soc. Abstracts. 36:4445.Google Scholar
Forcella, F. 1997. My view. Weed Sci. 45:327.Google Scholar
Goddard, R. H., Webster, T. M., Carter, J. R., and Grey, T. L. 2009. Resistance of Benghal dayflower (Commelina benghalensis) seeds to harsh environments and the implications for dispersal by mourning doves (Zenaida macroura) in Georgia, USA. Weed Sci. 57:603612.Google Scholar
Gonzalez, C. B. and Haddad, C. R. B. 1995. Light and temperature effects on flowering and seed germination of Commelina benghalensis L. Arq. Biol. Tecnol. 38:651659.Google Scholar
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds: Distribution and Biology. Honolulu University Press of Hawaii. 609 p.Google Scholar
Kabat, C. 2003. Floristic Inventory of Morningside Nature Center, Alachua County, Florida. . Gainesville, FL University of Florida. 89 p.Google Scholar
Kaul, V., Sharma, N., and Koul, A. K. 2002. Reproductive effort and sex allocation strategy in Commelina benghalensis L., a common monsoon weed. Bot. J. Linn. Soc. 140:403413.Google Scholar
Kim, S. Y. 1998. Growth and development of Commelina benghalensis L. from four seed types. Kor. J. Weed Sci. 18:4247.Google Scholar
Kim, S. Y., De Datta, S. K., and Mercado, B. L. 1990. The effect of chemical and heat treatments on germination of Commelina benghalensis L. aerial seeds. Weed Res. 30:109116.Google Scholar
Koger, C. H., Reddy, K. N., and Poston, D. H. 2004. Factors affecting seed germination, seedling emergence, and survival of texasweed (Caperonia palustris). Weed Sci. 52:989995.Google Scholar
Krings, A., Burton, M. G., and York, A. C. 2002. Commelina benghalensis (Commelinaceae) new to North Carolina and an updated key to Carolina congeners. Sida. 20:419422.Google Scholar
Maheshwari, P. and Maheshwari, J. K. 1955. Floral dimorphism in Commelina forskalaei Vahl. and C. benghalensis L. Phytomorphology. 5:413422.Google Scholar
Matsuo, M., Michinaga, H., Terao, H., and Tsuzuki, E. 2004. Aerial seed germination and morphological characteristics of juvenile seedlings in Commelina benghalensis L. Weed Biol. Manag. 4:148153.Google Scholar
Mayer, D. G. and Butler, D. G. 1993. Statistical validation. Ecological Modelling. 68:2132.Google Scholar
Norsworthy, J. K. and Oliveira, M. J. 2006. Sicklepod (Senna obtusifolia) germination and emergence as affected by environmental factors and seeding depth. Weed Sci. 54:903909.Google Scholar
Odum, W. E. 1988. Comparative ecology of tidal freshwater and salt marshes. Annu. Rev. Ecol. Syst. 19:147176.Google Scholar
Parker, D. C., Simmons, F. W., and Wax, L. M. 2005. Fall and early preplant application timing effects on persistence and efficacy of acetamide herbicides. Weed Technol. 19:613.Google Scholar
Prostko, E. P., Culpepper, A. S., Webster, T. M., and Flanders, J. T. 2005. Tropical Spiderwort Identification and Control in Georgia Field Crops. Tifton, GA University of Georgia Cooperative Extension Service Bulletin. http://www.caes.uga.edu/applications/publications/files/pdf/C%20884_2.PDF. Accessed: October 6, 2010.Google Scholar
Richards, C. L., Walls, R. L., Bailey, J. P., Parameswaran, R., George, T., and Pigliucci, M. 2008. Plasticity in salt tolerance traits allows for invasion of novel habitat by Japanese knotweed s. l. (Fallopia japonica and F. bohemica, Polygonaceae). Am. J. Bot. 95:931942.Google Scholar
Santos, I. C., Ferreira, F. A., Miranda, G. V., and Santos, L. D. T. 2001. Germination of aerial and underground seeds of Commelina benghalensis . Planta Daninha. 19:163170.Google Scholar
SAS Institute. 1999. SAS Procedures Guide, Version 8. Cary, NC SAS Institute Inc. 1563 p.Google Scholar
Schutte, B. J., Regnier, E. E., Harrison, S. K., Schmoll, J. T., Spokas, K., and Forcella, F. 2008. A hydrothermal seedling emergence model for giant ragweed (Ambrosia trifida). Weed Sci. 56:550560.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Senseman, S. A. 2007. Herbicide Handbook. Lawrence, KS Weed Science Society of America. 458 p.Google Scholar
Sermons, S. M., Burton, M. G., and Rufty, T. W. 2008. Temperature response of Benghal dayflower (Commelina benghalensis): implications for geographic range. Weed Sci. 56:707713.Google Scholar
Smith, C. A., Shaw, D. R., and Newsom, L. J. 1992. Arrowleaf sida (Sida rhombifolia) and prickly sida (Sida spinosa): germination and emergence. Weed Res. 32:103109.Google Scholar
USDA–APHIS. 2010. Federal Noxious Weed List. http://www.aphis.usda.gov/plant_health/plant_pest_info/weeds/downloads/weedlist-2010doc.pdf. Accessed: February 16, 2011.Google Scholar
Vasquez, E. A., Glenn, E. P., Guntenspergen, G. R., Brown, J. J., and Nelson, S. G. 2006. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. Am. J. Bot. 93:17841790.Google Scholar
Walker, S. R. and Evenson, J. P. 1985a. Biology of Commelina benghalensis L. in south-eastern Queensland. 1. Growth, development and seed production. Weed Res. 25:239244.Google Scholar
Walker, S. R. and Evenson, J. P. 1985b. Biology of Commelina benghalensis L. in south-eastern Queensland. 2. Seed dormancy, germination and emergence. Weed Res. 25:245250.Google Scholar
Webster, T. M. 2005. Weed survey—southern states: broadleaf crops subsection. Pages 509524 in Webster, T. M., ed. Proc. South. Weed Sci. Soc.Google Scholar
Webster, T. M. 2009. Weed survey—southern states: broadleaf crops subsection. Pages 510525 in Webster, T. M. ed. Proc. South. Weed Sci. Soc.Google Scholar
Webster, T. M., Burton, M. G., Culpepper, A. S., Flanders, J. T., Grey, T. L., and York, A. C. 2006. Tropical spiderwort (Commelina benghalensis) control and emergence patterns in preemergence herbicide systems. J. Cotton Sci. 10:6875.Google Scholar
Webster, T. M., Burton, M. G., Culpepper, A. S., York, A. C., and Prostko, E. P. 2005. Tropical spiderwort (Commelina benghalensis): a tropical invader threatens agroecosystems of the southern United States. Weed Technol. 19:501508.Google Scholar
Webster, T. M. and Cardina, J. 2004. A review of the biology and ecology of Florida beggarweed (Desmodium tortuosum). Weed Sci. 52:185200.Google Scholar
Webster, T. M., Faircloth, W. H., Flanders, J. T., Prostko, E. P., and Grey, T. L. 2007. The critical period of Bengal dayflower (Commelina bengalensis) control in peanut. Weed Sci. 55:359364.Google Scholar
Webster, T. M. and Grey, T. L. 2008. Growth and reproduction of Benghal dayflower (Commelina benghalensis) in response to drought stress. Weed Sci. 56:561566.Google Scholar
Webster, T. M., Grey, T. L., Flanders, J. T., and Culpepper, A. S. 2009. Cotton planting date affects the critical period of Benghal dayflower (Commelina benghalensis) control. Weed Sci. 57:8186.Google Scholar
Wei, S. H., Zhang, C. X., Li, X. J., Cui, H. L., Huang, H. J., Sui, B. F., Meng, Q. H., and Zhang, H. J. 2009. Factors affecting buffalobur (Solanum rostratum) seed germination and seedling emergence. Weed Sci. 57:521525.Google Scholar
Wilson, A. K. 1981. Commelinaceae—a review of the distribution, biology and control of the important weeds belonging to this family. Trop. Pest Manag. 27:405418.Google Scholar
Wilson, D. G., Burton, M. G., Spears, J. E., and York, A. C. 2006. Doveweed (Murdannia nudiflora) germination and emergence as affected by temperature and seed burial depth. Weed Sci. 54:10001003.Google Scholar