Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T18:24:27.407Z Has data issue: false hasContentIssue false

Effectiveness and Distribution of 2,4,5-T, Triclopyr, Picloram, and 3,6-Dichloropicolinic Acid in Honey Mesquite (Prosopis juliflora var. glandulosa)

Published online by Cambridge University Press:  12 June 2017

R. W. Bovey
Affiliation:
U.S. Dep. Agric., Sci. Ed. Admin., Agric. Res., Dep. Range Sci., Texas A&M Univ., College Station, TX 77843
M. S. Mayeux Jr.
Affiliation:
Grassland, Soil and Water Res. Lab., Temple, TX 76501

Abstract

Greenhouse-grown honey mesquite [Prosopis juliflora (Swartz) DC. var. glandulosa (Torr.) Cockerell] plants were treated with the propylene glycol butyl ether esters of 2,4,5-T [(2,4,5-trichlorophenoxy)acetic acid], the triethylamine salt or the ethylene glycol butyl ether esters of triclopyr {[(3,5,6-trichloro-2-pyridinyl) oxy]acetic acicd}, the potassium salt of picloram (4-amino-3,5,6-trichloropicolinic acid), or the monoethanol amine salt of 3,6-dichloropicolinic acid applied at the rate of 1.1 kg/ha to soil, foliage, or soil plus foliage. All herbicides were effective as foliar sprays in killing the stems of honey mesquite. When applied to the soil, picloram and 3,6-dichloropicolinic acid killed all above ground stems, and the ester and amine formulation of triclopyr killed 70 and 91% of the stem tissue, respectively, but 2,4,5-T was ineffective. Accumulation of herbicides in leaves 10 days after foliar spray was 28, 167, and 266 μg/g fresh wt for triclopyr, 3,6-dichloropicolinic acid, and picloram, respectively. Upward transport of picloram and 3,6-dichloropicolinic acid (2.7 to 5.9 μg/g) was also more extensive than that of 2,4,5-T or triclopyr after soil treatment. Higher concentrations of 3,6-dichloropicolinic acid than 2,4,5-T, triclopyr, or picloram usually was found in honey mesquite stems and roots 3, 10, or 30 days after application to soil or foliage. This may be one reason that 3,6-dichloropicolinic acid is highly effective in controlling honey mesquite.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bouse, L. F. and Bovey, R. W. 1967. A laboratory sprayer for potted plants. Weeds 15:8991.CrossRefGoogle Scholar
2. Bovey, R. W. 1971. Hormone-like herbicides in weed control. Econ. Bot. 25:385400.Google Scholar
3. Bovey, R. W., Davis, F. S., and Merkle, M. G. 1967. Distribution of picloram in huisache after foliar and soil applications. Weeds 15:245249.Google Scholar
4. Bovey, R. W., Ketchersid, M. L., and Merkle, M. G. 1979. Distribution of triclopyr and picloram in huisache (Acacia farnesiana . Weed Sci. 27:527531.Google Scholar
5. Bovey, R. W., Meyer, R. E., and Baur, J. R. 1980. Potential herbicides for brush control. J. Range Manage. (In press).Google Scholar
6. Bovey, R. W., Morton, H. L., Baur, J. R., Diaz-Colon, J., Dowler, C. C., and Lehman, S. K. 1969. Granular herbicides for woody plant control. Weed Sci. 17:538541.Google Scholar
7. Byrd, B. C., Fears, R. D., Smith, L. L., Warren, L. E., Ryder, J. C., and Lichy, C. T. 1977. Woody plant control with low volume applications of triclopyr. Proc. South. Weed Sci. Soc. 30:310315.Google Scholar
8. Davis, F. S., Bovey, R. W., and Merkle, M. G. 1968. The role of light, concentration and species in foliar uptake of herbicides in woody plants. For. Sci. 14:164169.Google Scholar
9. Davis, F. S., Merkle, M. G., and Bovey, R. W. 1968. Effect of moisture stress on the absorption and transport of herbicides in woody plants. Bot. Gaz. 129.183189.Google Scholar
10. Haagsma, T. 1975. Dowco 290 herbicide – a coming new selective herbicide. Down Earth 30(4): 12.Google Scholar
11. Hoffman, G. O. 1975. Control and management of mesquite on rangeland. Texas Agric. Ext. Serv., Misc. Publ. 386. 15 pp.Google Scholar
12. Jacoby, P. W. Jr. and Meadors, C. H. 1978. Relative effectiveness of aerially applied herbicides on honey mesquite (Prosopis glandulosa . Proc. Soc. Range Manage. 31:51 (Abstr.) Google Scholar
13. Jacoby, P. W. Jr., Meadors, C. H., and Foster, M. A. 1979. Relative effectiveness of ester and amine formulations of triclopyr for control of honey mesquite [Prosopis juliflora var. glandulosa (Torr.) Cockerell]. Weed Sci. Soc. Am. Abstr. No. 115. p. 56.Google Scholar
14. Morton, H. L. 1966. Influence of temperature and humidity on foliar absorption, translocation and metabolism of 2,4,5-T by mesquite seedlings. Weeds 14:136140.Google Scholar
15. Morton, H. L., Davis, F. S., and Merkle, M. G. 1968. Radioisotopic and gas chromatographic methods for measuring absorption and translocation of 2,4,5-T by mesquite. Weed Sci. 16:8891.Google Scholar
16. Pik, A. J., Peake, E., Strosher, M. T., and Hodgson, G. W. 1977. Fate of 3,6-dichloropicolinic acid in soils. J. Agric. Food Chem. 25:10541061.Google Scholar
17. Radosevich, S. R. and Bayer, D. E. 1979. Effect of temperature and photoperiod on triclopyr, picloram, and 2,4,5-T translocation. Weed Sci. 27:2227.Google Scholar
18. Scifres, C. J., Baur, J. R., and Bovey, R. W. 1973. Absorption of 2,4,5-T applied in various carriers to honey mesquite. Weed Sci. 21:9496.Google Scholar
19. Steel, R. G. D. and Torrie, J. H. 1960. Principles and Procedures of Statistics. McGraw-Hill Book Co., New York. 481 pp.Google Scholar