Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T05:26:29.990Z Has data issue: false hasContentIssue false

The Critical Period of Weed Control in Faba Bean and Chickpea in Mediterranean Areas

Published online by Cambridge University Press:  20 January 2017

Alfonso S. Frenda
Affiliation:
Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Palermo, Italy
Paolo Ruisi
Affiliation:
Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Palermo, Italy
Sergio Saia
Affiliation:
Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Palermo, Italy
Benedetto Frangipane
Affiliation:
Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione, Loc. Corno d'Oro SS 18 km 77.7, Battipaglia (SA), Italy
Giuseppe Di Miceli
Affiliation:
Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Palermo, Italy
Gaetano Amato
Affiliation:
Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Palermo, Italy
Dario Giambalvo*
Affiliation:
Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Palermo, Italy
*
Corresponding author's E-mail: [email protected]

Abstract

Weeds are often the major biological constraint to growing legume crops successfully, and an understanding of the critical period of weed control (CPWC) is important for developing environmentally sustainable weed management practices to prevent unacceptable yield loss. Therefore, we carried out two field experiments to identify the CPWC for two grain legume crops traditionally grown in Mediterranean areas: chickpea and faba bean. The experiments were conducted at two sites both located in the Sicilian inland (Italy). In chickpea, when weeds were left to compete with the crop for the whole cycle, the grain yield reduction was on average about 85% of the weed-free yield, whereas in faba bean the reduction was less severe (on average about 60% of the weed-free yield). The onset of the CPWC at a 5% yield loss level varied by species, occurring later in faba bean than in chickpea (on average, 261 and 428 growing degree days after emergence for chickpea and faba bean, respectively). In both species, the end of the CPWC occurred at the early full-flowering stage when the canopy of each crop enclosed the interrow space. On the whole, the CPWC at a 5% yield loss level ranged from 50 to 69 d in chickpea and from 28 to 33 d in faba bean. The results highlight the fact that faba bean has a higher competitive ability against weeds than chickpea. This could be attributable both to more vigorous early growth and to the plant's greater height, both factors related to a greater shading ability and, consequently, to a better ability to suppress weeds.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Thahabi, S. A., Yasin, J. Z., ABU-Irmaileh, B. E., Haddad, N. I., and Saxena, M. C. 1994. Effect of weed removal on productivity of chickpea (Cicer arietinum L.) and lentil (Lens culinaris Med.) in a Mediterranean environment. J. Agron. Crop Sci. 172:333341.CrossRefGoogle Scholar
Ayaz, S., McKenzie, B. A., Hill, G. D., and McNeil, D. L. 2004. Variability in yield of four grain legume species in a sub-humid temperate environment. II. Yield components. J. Agric. Sci. 142:2128.CrossRefGoogle Scholar
Berkowitz, A. R. 1988. Competition for resources in weed–crop mixtures. Pages 89120 in Altieri, M. A. and Liebman, M., eds. Weed Management in Agroecosystems: Ecological Approaches. Boca Raton, FL CRC Press.Google Scholar
Bonanno, A., Tornambè, G., Di Grigoli, A., Genna, V., Bellina, V., Di Miceli, G., and Giambalvo, D. 2012. Effect of legume grains as a source of dietary protein on the quality of organic lamb meat. J. Sci. Food Agric. 92:28702875.Google Scholar
Bukun, B. 2004. Critical periods for weed control in cotton in Turkey. Weed Res. 44:404412.Google Scholar
Confalone, A., Booteb, K. J., Lizasoc, J. I., and Sau, F. 2011. Temperature and photoperiod effects on Vicia faba phenology simulated by CROPGRO-fababean. Agron. J. 103:10361050.Google Scholar
Dumur, D., Pilbeam, C. J., and Craigon, J. 1990. Use of the Weibull function to calculate cardinal temperatures in faba bean. J. Exp. Bot. 41:14231430.Google Scholar
Evans, S. P., Knezevic, S. Z., Lindquist, J. L., Shapiro, C. A., and Blankenship, E. E. 2003. Nitrogen application influences the critical period for weed control in corn. Weed Sci. 51:408417.CrossRefGoogle Scholar
FAOSTAT. 2012. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/site/567/default.aspx#ancor. Accessed September 10, 2012.Google Scholar
Fedoruk, L. K., Johnson, E. N., and Shirtliffe, S. J. 2011. The critical period of weed control for lentil in Western Canada. Weed Sci. 59:517526.Google Scholar
French, R. J. 1990. The contribution of pod number to field pea (Pisum sativum L.) yields in a short growing-season environment. Aust. J. Agric. Res. 41:853862.Google Scholar
Giambalvo, D., Ruisi, P., Di Miceli, G., Frenda, A. S., and Amato, G. 2010. Nitrogen use efficiency and nitrogen fertilizer recovery of durum wheat genotypes as affected by interspecific competition. Agron. J. 102:707715.Google Scholar
Giambalvo, D., Ruisi, P., Saia, S., Di Miceli, G., Frenda, A. S., and Amato, G. 2012. Faba bean grain yield, N2 fixation, and weed infestation in a long-term tillage experiment under rainfed Mediterranean conditions. Plant Soil. 360:215227.Google Scholar
Gonzalez Ponce, R. and Santin, Y. 2001. Competitive ability of wheat cultivars with wild oats depending on nitrogen fertilization. Agronomie 21:119125.Google Scholar
Hall, M. R., Swanton, C. J., and Anderson, G. W. 1992. The critical period on weed control in grain corn (Zea mays). Weed Sci. 40:441447.CrossRefGoogle Scholar
Harker, K. N., Blackshaw, R. E., and Clayton, G. W. 2001. Timing of weed removal in field pea (Pisum sativum). Weed Technol. 15:277283.Google Scholar
Jensen, E. S., Peoples, M. B., and Hauggaard-Nielsen, H. 2010. Faba bean in cropping systems. Field Crops Res. 115:203216.Google Scholar
Kavurmaci, Z., Karadavut, U., Kokten, K., and Bakoglu, A. 2010. Determining critical period of weed–crop competition in faba bean (Vicia faba). Int. J. Agric. Biol. 12:318320.Google Scholar
Knezevic, S. Z., Evans, S. P., Blankenship, E. E., Van Acker, R. C., and Lindquist, J. L. 2002. Critical period for weed control: the concept and data analysis. Weed Sci. 50:773786.Google Scholar
Knezevic, S. Z., Evans, S. P., and Mainz, M. 2003. Row spacing influences the critical timing of weed removal in soybean (Glycine max). Weed Technol. 17:666673.CrossRefGoogle Scholar
Knezevic, S. Z., Horak, M. J., and Vanderlip, R. L. 1997. Relative time of redroot pigweed (Amaranthus retroflexus) emergence is critical in pigweed–sorghum (Sorghum bicolor) competition. Weed Sci. 45:502508.Google Scholar
Knezevic, S. Z., Weise, S. F., and Swanton, C. J. 1994. Interference of redroot pigweed (Amaranthus retroflexus L.) in corn (Zea mays L.). Weed Sci. 42:568573.Google Scholar
Loss, S. P. and Siddique, K.H.M. 1997. Adaptation of faba bean (Vicia faba L.) to dryland Mediterranean-type environments. I. Seed yield and yield components. Field Crops Res. 52:1728.Google Scholar
Malik, V. S., Swanton, C. J., and Michaels, T. E. 1993. Interaction of white bean (Phaseolus vulgaris L.) cultivars, row spacing, and seeding density with annual weeds. Weed Sci. 41:6268.Google Scholar
Martin, S. G., Van Acker, R. C., and Friesen, L. F. 2001. Critical period of weed control in spring canola. Weed Sci. 49:326333.Google Scholar
Mohamed, E. S., Nourai, A. H., Mohamed, G. E., Mohamed, M. I., and Saxena, M. C. 1997. Weeds and weed management in irrigated lentil in northern Sudan. Weed Res. 37:211218.Google Scholar
Mohammadi, G., Javanshir, A., Khooie, F. R., Mohammadi, S. A., and Zehtab Salmasi, S. 2005. Critical period of weed interference in chickpea. Weed Res. 45:5763.Google Scholar
Mohler, C. L. 2001. Enhancing the competitive ability of crops. Pages 269374 in Liebman, M., Mohler, C. L., and Staver, C. P., eds. Ecological Management of Agricultural Weeds. Cambridge, UK Cambridge University Press.Google Scholar
Otto, S., Masin, R., Casari, G., and Zanin, G. 2009. Weed–corn competition on parameters in late-winter sowing in northern Italy. Weed Sci. 57:194201.Google Scholar
Rajcan, I., Chandler, K. J., and Swanton, C. J. 2004. Red–far-red ratio of reflected light: a hypothesis of why early-season weed control is important in corn. Weed Sci. 52:774778.Google Scholar
Rajcan, I. and Swanton, C. J. 2001. Understanding maize–weed competition: resource competition, light quality and the whole plant. Field Crops Res. 71:139150.CrossRefGoogle Scholar
Ruisi, P., Giambalvo, D., Di Miceli, G., Frenda, A. S., Saia, S., and Amato, G. 2012. Tillage effects on yield and nitrogen fixation of legumes in Mediterranean conditions. Agron. J. 104:14591466.Google Scholar
SAS. 2008. SAS/STAT User's Guide, Second Edition. Cary, NC SAS Institute Inc.Google Scholar
Saxena, M. C., Subramantyam, K. K., and Yadav, D. S. 1976. Chemical and mechanical control of weeds in gram. Pantnagar J. Res. 1:112116.Google Scholar
Schumacher, F. X. 1939. A growth curve and its application to timber-yield studies. J. For. 37:819820.Google Scholar
Singh, P. 1991. Influence of water-deficits on phenology, growth and dry-matter allocation in chickpea (Cicer arietinum). Field Crops Res. 28:115.Google Scholar
Sit, V. and Costello, M. P. 1994. Catalog of Curves for Curve Fitting. Biometrics Information Handbook Series, No. 4. Victoria, BC, Canada Ministry of Forests. 110 p.Google Scholar
Smitchger, J. A., Burke, I. C., and Yenish, J. P. 2012. The critical period of weed control in lentil (Lens culinaris) in the Pacific Northwest. Weed Sci. 60:8185.Google Scholar
Stagnari, F. and Pisante, M. 2011. The critical period for weed competition in French bean (Phaseolus vulgaris L.) in Mediterranean areas. Crop Prot. 30:179184.Google Scholar
Strydhorst, S. M., King, J. R., Lopetinsky, K. J., and Harker, K. N. 2008. Weed interference, pulse species, and plant density effects on rotational benefits. Weed Sci. 56:249258.Google Scholar
Summerfield, R. J., Virmani, S. M., Roberts, E. H., and Ellis, R. H. 1990. Adaptation of chickpea to agroclimatic constraints. Pages 6172 in Walby, B. J. and Hall, S. D., eds. Proceedings of the 2nd International Workshop on Chickpea Improvement. Patancheru, India ICRISAT.Google Scholar
Tepe, I., Erman, M., Yergin, R., and Bükün, B. 2011. Critical period of weed control in chickpea under non-irrigated conditions. Turk. J. Agric. For. 35:525534.Google Scholar
Unkovich, M. J., Pate, J. S., and Sanford, P. 1997. Nitrogen fixation by annual legumes in Australian Mediterranean agriculture. Aust. J. Agric. Res. 48:267293.Google Scholar
van Kessel, C. and Hartley, C. 2000. Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crops Res. 65:165181.Google Scholar
Williams, M. M. II. 2006. Planting date influences critical period of weed control in sweet corn. Weed Sci. 54:928933.Google Scholar