Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T05:57:17.279Z Has data issue: false hasContentIssue false

Applications of hydrothermal time to quantifying and modeling seed germination and dormancy

Published online by Cambridge University Press:  20 January 2017

Kent J. Bradford*
Affiliation:
Department of Vegetable Crops, One Shields Avenue, University of California, Davis, CA 95616-8631, U.S.A. [email protected]

Abstract

Knowledge and prediction of seasonal weed seedling emergence patterns is useful in weed management programs. Seed dormancy is a major factor influencing the timing of seedling emergence, and once dormancy is broken, environmental conditions determine the rate of germination and seedling emergence. Seed dormancy is a population-based phenomenon, because individual seeds are independently sensing their environment and responding physiologically to the signals they perceive. Mathematical models based on characterizing the variation that occurs in germination times among individual seeds in a population can describe and quantify environmental and after-ripening effects on seed dormancy. In particular, the hydrothermal time model can describe and quantify the effects of temperature and water potential on seed germination. This model states that the time to germination of a given seed fraction is inversely proportional to the amount by which a given germination factor (e.g., temperature or water potential) exceeds a threshold level for that factor. The hydrothermal time model provides a robust method for understanding how environmental factors interact to result in the germination phenotype (i.e., germination pattern over time) of a seed population. In addition, other factors that influence seed dormancy and germination act by causing the water potential thresholds of the seed population to shift to higher or lower values. This relatively simple model can describe and quantify the germination behavior of seeds across a wide array of environmental conditions and dormancy states, and can be used as an input to more general models of seed germination and seedling emergence in the field.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, R. 1999. Germination of Callitris seeds in relation to temperature, water stress, priming, and hydration-dehydration cycles. J. Arid Environ. 43:437448.CrossRefGoogle Scholar
Allen, P. S. and Meyer, S. E. 1998. Ecological aspects of seed dormancy loss. Seed Sci. Res. 8:183191.Google Scholar
Allen, P. S., Meyer, S. E., and Khan, M. A. 2000. Hydrothermal time as a tool in comparative germination studies. Pages 401410 in Black, M. Google Scholar
Bradford, K. J. and Vázquez-Ramos, J., eds. Seed Biology: Advances and Applications. Wallingford, U.K., CABI Publishing.Google Scholar
Allen, P. S., White, D. B., and Markhart, A. H. 1993. Germination of perennial ryegrass and annual bluegrass seeds subjected to hydration-dehydration cycles. Crop Sci. 33:10201025.CrossRefGoogle Scholar
Alvarado, V. 2000. Hydrothermal time model of botanical potato seed germination. , University of California, Davis, 71 pp.Google Scholar
Alvarado, V., Nonogaki, H., and Bradford, K. J. 2000. Expression of endo-β-mannanase and SNF-related protein kinase genes in true potato seeds in relation to dormancy, gibberellin and abscisic acid. Pages 347364 In Viemont, J.D. and Crabbé, J., eds. Dormancy in Plants. Wallingford, U.K., CAB International.Google Scholar
Baskin, C. C. and Baskin, J. M. 1998. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. New York, Academic Press.Google Scholar
Battaglia, M. 1997. Seed germination model for Eucalyptus delegatensis provenances germinating under conditions of variable temperature and water potential. Aust. J. Plant Physiol. 24:6979.Google Scholar
Bauer, M. C., Meyer, S. E., and Allen, P. S. 1998. A simulation model to predict seed dormancy loss in the field for Bromus tectorum L. J. Exp. Bot. 49:12351244.Google Scholar
Benech-Arnold, R. L. and Sánchez, R. A. 1995. Modeling weed seed germination. Pages 545566 In Kigel, J. and Galili, G., eds. Seed Development and Germination. New York, Marcel Dekker, Inc. Google Scholar
Benech-Arnold, R. L., Sánchez, R. A., Forcella, F., Kruk, B. C., and Ghersa, C. M. 2000. Environmental control of dormancy in weed seed banks in soil. Field Crops Res. 67:105122.Google Scholar
Bierhuizen, J. F. and Wagenvoort, W. A. 1974. Some aspects of seed germination in vegetables. I. The determination and application of heat sums and minimum temperature for germination. Scientia Hortic. 2:213219.Google Scholar
Botto, J. F., Scopel, A. L., and Sánchez, R. A. 2000. Water constraints on the photoinduction of weed seed germination during tillage. Aust. J. Plant Physiol. 27:463471.Google Scholar
Bradford, K. J. 1990. A water relations analysis of seed germination rates. Plant Physiol. 94:840849.CrossRefGoogle ScholarPubMed
Bradford, K. J. 1995. Water relations in seed germination. Pages 351396 In Kigel, J. and Galili, G., eds. Seed Development and Germination. New York, Marcel Dekker, Inc. Google Scholar
Bradford, K. J. 1996. Population-based models describing seed dormancy behaviour: implications for experimental design and interpretation. Pages 313339 In Lang, G. A., ed. Plant Dormancy: Physiology, Biochemistry and Molecular Biology. Wallingford, U.K., CAB International.Google Scholar
Bradford, K. J. 1997. The hydrotime concept in seed germination and dormancy. Pages 349360 In Ellis, R. H., Black, M., Murdoch, A. J. and Hong, T. D., eds. Basic and Applied Aspects of Seed Biology. Boston, Kluwer Academic Publishers.CrossRefGoogle Scholar
Bradford, K. J., Chen, F., Cooley, M. B., Dahal, P., Downie, B., Fukunaga, K. K., Gee, O. H., Gurusinghe, S., Mella, R. A., Nonogaki, H., Wu, C.-T., and Yim, K.- O. 2000. Gene expression prior to radicle emergence in imbibed tomato seeds. Pages 231251 In Black, M., Bradford, K. J. and Vázquez-Ramos, J., eds. Seed Biology: Advances and Applications. Wallingford, U.K., CAB International.Google Scholar
Bradford, K. J. and Haigh, A. M. 1994. Relationship between accumulated hydrothermal time during seed priming and subsequent seed germination rates. Seed Sci. Res. 4:6370.Google Scholar
Bradford, K. J. and Somasco, O. A. 1994. Water relations of lettuce seed thermoinhibition. I. Priming and endosperm effects on base water potential. Seed Sci. Res. 4:110.Google Scholar
Bradford, K. J., Tarquis, A. M., and Durán, J. M. 1993. A population-based threshold model describing the relationship between germination rates and seed deterioration. J. Exp. Bot. 264:12251234.Google Scholar
Chen, F. and Bradford, K. J. 2000. Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol. 124:12651274.Google Scholar
Cheng, Z. and Bradford, K. J. 1999. Hydrothermal time analysis of tomato seed germination responses to priming treatments. J. Exp. Bot. 50:8999.Google Scholar
Christensen, M., Meyer, S. E., and Allen, P. S. 1996. A hydrothermal time model of seed after-ripening in Bromus tectorum L. Seed Sci. Res. 6:19.Google Scholar
Corbineau, F. and Côme, D. 2000. Dormancy of cereal seeds as related to embryo sensitivity to ABA and water potential. Pages 183194 In Viemont, J. D. and Crabbé, J., eds. Dormancy in Plants. Wallingford, U.K., CAB International.Google Scholar
Covell, S., Ellis, R. H., Roberts, E. H., and Summerfield, R. J. 1986. The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soybean, and cowpea at constant temperatures. J. Exp. Bot. 37:705715.Google Scholar
Dahal, P. and Bradford, K. J. 1990. Effects of priming and endosperm integrity on seed germination rates of tomato genotypes. II. Germination at reduced water potential. J. Exp. Bot. 41:14411453.Google Scholar
Dahal, P. and Bradford, K. J. 1994. Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Sci. Res. 4:7180.CrossRefGoogle Scholar
Dahal, P., Bradford, K. J., and Jones, R. A. 1990. Effects of priming and endosperm integrity on seed germination rates of tomato genotypes. I. Germination at suboptimal temperature. J. Exp. Bot. 41:14311439.Google Scholar
de Miguel, L. C. and Sánchez, R. A. (1992) Phytochrome-induced germination, endosperm softening and embryo growth potential in Datura ferox seeds: sensitivity to low water potential and time to escape to FR reversal. J. Exp. Bot. 43:969974.Google Scholar
Derkx, M. P. M. and Karssen, C. M. 1993. Changing sensitivity to light and nitrate but not to gibberellins regulates seasonal dormancy patterns in Sisymbrium officinale seeds. Plant Cell Environ. 16:469479.Google Scholar
Derkx, M. P. M. and Karssen, C. M. 1994. Are seasonal dormancy patterns in Arabidopsis thaliana regulated by changes in seed sensitivity to light, nitrate and gibberellin? Ann. Bot. 73:129136.Google Scholar
Ellis, R. H. and Barrett, S. 1994. Alternating temperatures and the rate of seed germination in lentil. Ann. Bot. 74:519524.CrossRefGoogle Scholar
Ellis, R. H. and Butcher, P. D. 1988. The effects of priming and ‘natural’ differences in quality amongst onion seed lots on the response of the rate of germination to temperature and the identification of the characteristics under genotypic control. J. Exp. Bot. 39:935950.Google Scholar
Ellis, R. H., Covell, S., Roberts, E. H., and Summerfield, R. J. 1986. The influence of temperature on seed germination rate in grain legumes. II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures. J. Exp. Bot. 37:15031515.Google Scholar
Ellis, R. H., Simon, G., and Covell, S. 1987. The influence of temperature on seed germination rate in grain legumes. III. A comparison of five faba bean genotypes at constant temperatures using a new screening method. J. Exp. Bot. 38:10331043.Google Scholar
Fenner, M., ed. 2000. Seeds: The Ecology of Regeneration in Plant Communities. Wallingford, U.K., CABI Publishing.Google Scholar
Fennimore, S. A. and Foley, M. E. 1998. Genetic and physiological evidence for the role of gibberellic acid in the germination of dormant Avena fatua seeds. J. Exp. Bot. 49:8994.CrossRefGoogle Scholar
Finch-Savage, W. E. and Phelps, K. 1993. Onion (Allium cepa L.) seedling emergence patterns can be explained by the influence of soil temperature and water potential on seed germination. J. Exp. Bot. 44:407414.CrossRefGoogle Scholar
Finch-Savage, W. E., Steckel, J. R. A., and Phelps, K. 1998. Germination and post-germination growth to carrot seedling emergence: predictive threshold models and sources of variation between sowing occasions. New Phytol. 139:505516.CrossRefGoogle Scholar
Finch-Savage, W. E., Phelps, K., Peach, L., and Steckel, J. R. A. 2000. Use of threshold germination models under variable field conditions. Pages 489497 In Black, M., Bradford, K. J. and Vázquez-Ramos, J., eds. Seed Biology: Advances and Applications Wallingford, U.K., CABI Publishing.Google Scholar
Flores, J. and Briones, O. 2001. Plant life-form and germination in a Mexican inter-tropical desert: effects of soil water potential and temperature. J. Arid. Environ. 47:485497.CrossRefGoogle Scholar
Forcella, F. 1998. Real-time assessment of seed dormancy and seedling growth for weed management. Seed Sci. Res. 8:201209.Google Scholar
Forcella, F., Benech-Arnold, R. L., Sánchez, R., and Ghersa, C. M. 2000. Modeling seedling emergence. Field Crops Res. 67:123139.Google Scholar
Fyfield, T. P. and Gregory, P. J. 1989. Effects of temperature and water potential on germination, radicle elongation and emergence of mungbean. J. Exp. Bot. 40:667674.Google Scholar
Garcia-Huidobro, J., Monteith, J. L., and Squire, G. R. 1982. Time, temperature and germination of pearl millet (Pennisetum thyphoides S. and H.). I. Constant temperatures. J. Exp. Bot. 33:288296.Google Scholar
Ghersa, C. M., Benech-Arnold, R. L., Sattore, E. H., and Martínez-Ghersa, M. A. 2000. Advances in weed management strategies. Field Crops Res. 67:95104.Google Scholar
Gómez-Cadenas, A., Zentella, R., Walker-Simmons, M. K., and Ho, T. H. D. 2001. Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell 13:667679.CrossRefGoogle ScholarPubMed
González-Zertuche, L., Vázquez-Yanes, C., Gamboa, A., Sánchez-Coronado, M. E., Aguilera, P., and Orozco-Segovia, A. 2001. Natural priming of Wigandia urens seeds during burial: effects on germination, growth and protein expression. Seed Sci. Res. 11:2734.Google Scholar
Gordon, A. G. 1973. The rate of germination. Pages 391409 In Heydecker, W., ed. Seed Ecology. London, Butterworths.Google Scholar
Grappin, P., Bouinot, D., Sotta, B., Miginiac, E., and Jullien, M. 2000. Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta 210:279285.Google Scholar
Grundy, A. C., Phelps, K., Reader, R. J., and Burston, S. 2000. Modelling the germination of Stellaria media using the concept of hydrothermal time. New Phytol. 148:433444.Google Scholar
Gummerson, R. J. 1986. The effect of constant temperatures and osmotic potential on the germination of sugar beet. J. Exp. Bot. 37:729741.CrossRefGoogle Scholar
Hilhorst, H. W. M. 1995. A critical update on seed dormancy. I. Primary dormancy. Seed Sci. Res. 5:6173.Google Scholar
Hilhorst, H. W. M. 1998. The regulation of secondary dormancy. The membrane hypothesis revisited. Seed Sci. Res. 8:7790.CrossRefGoogle Scholar
Hilhorst, H. W. M. and Toorop, P. E. 1997. Review on dormancy, germinability, and germination in crop and weed seeds. Adv. Agron. 61:111165.Google Scholar
Kamiya, Y. and Garcia-Martínez, J. L. 1999. Regulation of gibberellin biosynthesis by light. Curr. Opin. Plant Biol. 2:398403.Google Scholar
Karssen, C. M. 1982. Seasonal patterns in dormancy in weed seeds. Pages 243270 In Khan, A.A., ed. The Physiology and Biochemistry of Seed Development, Dormancy and Germination. Amsterdam, Elsevier Biomedical Press.Google Scholar
Kebreab, E. and Murdoch, A. J. 1999a. A quantitative model for loss of primary dormancy and induction of secondary dormancy in imbibed seeds of Orobanche spp. J. Exp. Bot. 50:211219.Google Scholar
Kebreab, E. and Murdoch, A. J. 1999b. Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. J. Exp. Bot. 50:655664.CrossRefGoogle Scholar
Kebreab, E. and Murdoch, A. J. 2000. The effect of water stress on the temperature range for germination of Orobanche aegyptiaca seeds. Seed Sci. Res. 10:127133.CrossRefGoogle Scholar
Labouriau, L. G. 1970. On the physiology of seed germination in Vicia graminea Sm.—I. Annals Acad. Brasilia Ciencia 42:235262.Google Scholar
Labouriau, L. G. and Osborn, J. H. 1984. Temperature dependence of the germination of tomato seeds. J. Thermal Biol. 9:285295.Google Scholar
Meyer, S. E., Debaene-Gill, S. B., and Allen, P. S. 2000. Using hydrothermal time concepts to model seed germination response to temperature, dormancy loss, and priming effects in Elymus elymoides . Seed Sci. Res. 10:213223.CrossRefGoogle Scholar
Meyer, S. E. and Monsen, S. B. 1991. Habitat-correlated variation in mountain big sagebrush (Artemisia tridentata ssp. vaseyana) seed germination patterns. Ecology 72:739742.Google Scholar
Myers, S. P., Foley, M. E., and Nichols, M. B. 1997. Developmental differences between germinating after-ripened and dormant excised Avena fatua L. embryos. Ann. Bot. 79:1923.Google Scholar
Murdoch, A. J., Sonko, L., and Kebreab, E. 2000. Population responses to temperature for loss and induction of seed dormancy and consequences for predictive empirical modeling. Pages 5768 In Viemont, J.-D. and Crabbé, J., eds. Dormancy in Plants. Wallingford, U.K., CABI Publishing.Google Scholar
Ni, B. R. and Bradford, K. J. 1992. Quantitative models characterizing seed germination responses to abscisic acid and osmoticum. Plant Physiol. 98:10571068.CrossRefGoogle ScholarPubMed
Ni, B. R. and Bradford, K. J. 1993. Germination and dormancy of abscisic acid- and gibberellin-deficient mutant tomato seeds. Sensitivity of germination to abscisic acid, gibberellin, and water potential. Plant Physiol. 101:607617.Google Scholar
Nonogaki, H., Gee, O. H., and Bradford, K. J. 2000. A germination-specific endo-β-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds. Plant Physiol. 123:12351245.Google Scholar
Orozco-Segovia, A., González-Zertuche, L., Mendoza, A., and Orozco, S. 1996. A mathematical model that uses Gaussian distribution to analyze the germination of Manfreda brachystachya (Agavaceae) in a thermogradient. Physiol. Plant. 98:431438.Google Scholar
Pallais, N. 1995. High temperature and low moisture reduce the storage requirement of freshly harvested true potato seeds. J. Am. Soc. Hortic. Sci. 120:699702.Google Scholar
Phelps, K. and Finch-Savage, W. E. 1997. A statistical perspective on threshold type germination models. Pages 361368 In Ellis, R. H., Black, M., Murdoch, A. J. and Hong, T. D., eds. Basic and Applied Aspects of Seed Biology. Boston, Kluwer Academic Publishers.CrossRefGoogle Scholar
Pritchard, H. W., Tompsett, P. B., and Manger, K. R. 1996. Development of a thermal time model for the quantification of dormancy loss in Aesculus hippocastanum seeds. Seed Sci. Res. 6:127135.Google Scholar
Roberts, E. H. 1988. Temperature and seed germination. Pages 109132 In Long, S. P. and Woodward, F. I., eds. Plants and Temperature. Cambridge, U.K: Society for Experimental Biology.Google Scholar
Roman, E. S., Murphy, S. D., and Swanton, C. J. 2000. Simulation of Chenopodium album seedling emergence. Weed Sci. 48:217224.CrossRefGoogle Scholar
Roman, E. S., Thomas, A. G., Murphy, S. D., and Swanton, C. J. 1999. Modeling germination and seedling elongation of common lambs-quarters (Chenopodium album). Weed Sci. 47:149155.Google Scholar
Rowse, H. R., McKee, J. M. T., and Higgs, E. C. 1999. A model of the effects of water stress on seed advancement and germination. New Phytol. 143:273279.Google Scholar
Schopfer, P. and Plachy, C. 1985. Control of seed germination by abscisic acid. III. Effect on embryo growth potential (minimum turgor pressure) and growth coefficient (cell wall extensibility) in Brassica napus L. Plant Physiol. 77:676686.Google Scholar
Shrestha, A., Thomas, A. G., and Swanton, C. J. 1999. Modeling germination and shoot-radicle elongation of Ambrosia artemisiifolia . Weed Sci. 47:557562.Google Scholar
Spyropoulos, C. G. and Reid, J. S. G. 1988. Water stress and galactomannan breakdown in germinated fenugreek seeds. Stress affects the production and the activities in vivo of galactomannan-hydrolysing enzymes. Planta 174:473478.Google ScholarPubMed
Steinmaus, S. J., Prather, T. S., and Holt, J. S. 2000. Estimation of base temperatures for nine weed species. J. Exp. Bot. 51:275286.CrossRefGoogle ScholarPubMed
Still, D. W. and Bradford, K. J. 1997. Endo-β-mannanase activity from individual tomato endosperm tissues in relation to germination. Plant Physiol. 113:2129.Google Scholar
Still, D. W. and Bradford, K. J. 1998. Using hydrotime and ABA-time models to quantify seed quality of Brassicas during development. J. Amer. Soc. Hort. Sci. 123:692699.Google Scholar
Tarquis, A. and Bradford, K. J. 1992. Prehydration and priming treatments that advance germination also increase the rate of deterioration of lettuce seed. J. Exp. Bot. 43:307317.Google Scholar
Taylor, A. G., Allen, P. S., Bennett, M. A., Bradford, K. J., Burris, J. S., and Misra, M. K. 1998. Seed enhancements. Seed Sci. Res. 8:245256.Google Scholar
Toorop, P. E., van Aelst, A. C., and Hilhorst, H. W. M. 1998. Endosperm cap weakening and endo-β-mannanase activity during priming of tomato (Lycopersicon esculentum cv. Moneymaker) seeds are initiated upon crossing a threshold water potential. Seed Sci. Res. 8:483491.Google Scholar
Toorop, P. E., van Aelst, A. C., and Hilhorst, H. W. M. 2000. The second step of the biphasic endosperm cap weakening that mediates tomato (Lycopersicon esculentum) seed germination is under control of ABA. J. Exp. Bot. 51:13711379.Google Scholar
Vegis, A. 1964. Dormancy in higher plants. Annu. Rev. Plant Physiol. 15:185224.Google Scholar
Vleeshouwers, L. M. and Bouwmeester, H. J. 2001. A simulation model for seasonal changes in dormancy and germination of seeds. Seed Sci. Res. 11:7792.Google Scholar
Vleeshouwers, L. M. and Kropff, M. J. 2000. Modelling field emergence patterns in arable weeds. New Phytol. 148:445457.Google Scholar
Yoshioka, T., Endo, T., and Satoh, S. 1998. Restoration of seed germination at supraoptimal temperatures by fluridone an inhibitor of abscisic synthesis. Plant Cell Physiol. 39:307312.Google Scholar