Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T08:24:31.532Z Has data issue: false hasContentIssue false

Action of Selected Herbicides and Tween 20 on Oat (Avena sativa) Membranes

Published online by Cambridge University Press:  12 June 2017

M. C. Watson
Affiliation:
Dep. Plant Sci., Univ. of Arizona Tucson, AZ 85721
P. G. Bartels
Affiliation:
Dep. Plant Sci., Univ. of Arizona Tucson, AZ 85721
K. C. Hamilton
Affiliation:
Dep. Plant Sci., Univ. of Arizona Tucson, AZ 85721

Abstract

Viability of enzymatically isolated and purified oat (Avena sativa L. ‘Markton’) mesophyll protoplasts was established by their ability to photosynthetically fix CO2 and to accumulate neutral red. When protoplasts were treated with 10-3 M alachlor [2-chloro-2′,6′-diethyl-N-(methoxymethyl)acetanilide], barban (4-chloro-2-butynyl m-chlorocarbanilate), dalapon (2,2-dichloropropionic acid), dicamba (3,6-dichloro-o-anisic acid), glyphosate [N-(phosphonomethyl)glycine], oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide), paraquat (1,1′-dimethyl-4,4′-bipyridinium ion), picloram (4-amino-3,5,6-trichloropicolinic acid), or trifluralin [α,α,α-trifluroro-2,6-dinitro-N,N-dipropyl-p-toluidine), only alachlor and barban caused significant leakage of 14C-labeled material from the protoplasts as compared to controls. An abrupt increase in leakage occurred when protoplasts were treated with Tween 20 (polyoxyethylene 20 sorbitan monolaurate) at concentrations above 0.01% (v/v). The amount of leakage from protoplasts treated with dalapon or paraquat in combination with Tween 20 appears to be equivalent to the sum of the individual treatments. Treatment of the plasma membrane ATPase with the above named herbicides during the assay period shows that alachlor, barban, and dicamba reduces enzyme activity whereas glyphosate increases the activity. Pretreatment of the membrane ATPase with the herbicides in assay buffer [36mM Tris [tris-(hydroxymethyl)-aminomethane]-MES [2-(N-morpholino)ethanesulfonic acid], 3mM MgSO4, 50mM KC1] did not inhibit the enzyme activity during the assay period. Pretreatment with dicamba, glyphosate, and picloram in gradient buffer [1mM Tris-MES, 1mM MgSO4, 1mM dithiothreitol] did inhibit enzyme acitivty during the assay period. However, these herbicides cause the pH of the gradient buffer to be acidic.

Type
Research Article
Copyright
Copyright © 1980 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bachelard, E. P. and Ayling, R. D. 1971. The effects of picloram and 2,4-D on plant cell membranes. Weed Res. 11:3136.Google Scholar
2. Balke, N. E., Sze, H., Leonard, R. T., and Hodges, T. K. 1974. Cation sensitivity of the plasma membrane ATPase of oat roots. Pages 301306 in Zimmermann, U. and Dainty, J., eds. Membrane transport in plants. Springer-Verlag, New York.CrossRefGoogle Scholar
3. Baur, J. R., Bovey, R. W., Baur, P. S., and El-Seify, Z. 1969. Effects of paraquat on the ultrastructure of mesquite mesophyll cells.CrossRefGoogle Scholar
4. Bernath, F. R. and Vieth, W. R. 1972. Lysozyme activity in the presence of nonionic detergent micelles. Biotechnol. Bioeng. 14:737752.Google Scholar
5. Boulware, M. A. and Camper, N. D. 1972. Effects of selected herbicides on plant protoplasts. Physiol. Plant. 26:313317.Google Scholar
6. Bruinsma, J. 1961. A comment on the spectrophotometric determination of chlorphyll. Biochim. Biophys. Acta 52:576678.Google Scholar
7. Cocking, E. C. 1965. Plant Protoplasts. Pages 170199 in Carthy, J. D. and Duddington, C. L., eds. Viewpoints in Biology. Vol. 4. Butterworth and Co., London.Google Scholar
8. Davis, D. G. and Shimabukuro, R. H. 1973. Photosynthetic and electron microscopic studies of enzymatically-isolated peanut cells incubated with diquat. Abstr., Weed Sci. Soc. Am. p. 71.Google Scholar
9. Fiske, C. H. and Subbarow, Y. 1925. The colorimetric determination of phosphorus. J. Biol. Chem. 66:375400.CrossRefGoogle Scholar
10. Fuchs, Y. and Galston, A. W. 1976. Macromolecular synthesis in oat leaf protoplasts. Plant Cell Physiol. 17:475482.Google Scholar
11. Haapala, E. 1970. The effect of a non-ionic detergent on some plant cells. Physiol. Plant. 23.187201.Google Scholar
12. Harris, N. and Doge, A. D. 1972. The effect of paraquat on flax cotyledon leaves: Changes in fine structure. Planta 104:201209.Google Scholar
13. Harris, N. and Doge, A. D. 1972. The effect of paraquat on flax cotyledon leaves: Physiological and biochemical changes. Planta 104:210219.CrossRefGoogle ScholarPubMed
14. Hodges, T. K. and Leonard, R. T. 1974. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Pages 392406 in Colowick, S. P. and Kaplan, N. O., eds. Methods in Enzymology. Vol. 33. Academic Press, New York.Google Scholar
15. Kanai, R. and Edwards, G. E. 1973. Purification of enzymatically isolated mesophyll protoplasts from C3, C4, and crassulacean acid metabolism plants using an aqueous dextran-polyethylene glycol two-phase system. Plant Physiol. 52:484490.CrossRefGoogle ScholarPubMed
16. Leonard, R. T. and Hodges, T. K. 1973. Characterization of plasma membrane-associated adenosine triphosphatase activity of oat roots. Plant Physiol. 52:612.Google Scholar
17. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265275.Google Scholar
18. Magalhaes, A. C. and Ashton, F. M. 1969. Effect of dicamba on oxygen uptake and cell membrane permeability in leaf tissue of Cyperus rotundus L. Weed Res. 9:4852.Google Scholar
19. Miller, G. M. and St. John, J. B. 1974. Membrane-surfactant interactions in lipid micelles labeled with 1-anilino-8-naphthalenesulfonate. Plant Physiol. 54:527531.CrossRefGoogle Scholar
20. Porter, E. M. and Bartels, P. G. 1977. Use of single leaf cells to study mode of action of SAN 6706 on soybean and cotton. Weed Sci. 25:6065.Google Scholar
21. Reid, C. P. P. and Hurtt, W. 1969. Effects of picloram on transpiration. Abstr. Plant Physiol. 44:25 Suppl. Google Scholar
22. Roland, J. C., Lembi, C. A., and Morré, D. J. 1972. Phosphotungstic acid-chromic acid as a selective electron-dense stain for plasma membranes of plant cells. Stain Technol. 47:195200.CrossRefGoogle ScholarPubMed
23. Ruesink, A. W. 1971. The plasma membrane of Avena coleoptile protoplasts. Plant Physiol. 47:192195.Google Scholar
24. Sawhney, R. K., Rancillac, M., Staskawica, R., Adams, W. R. Jr., and Galston, A. W. 1976. Effect of cycloheximide and kinetin on yield, integrity and metabolic activity of oat leaf protoplasts. Plant Sci. Lett. 7:5767.CrossRefGoogle Scholar
25. Shimabukuro, R. H., Walsh, W. C., and Hoerauf, R. A. 1976. The role of coleoptile on barban sensitivity between wild oat and wheat. Pestic. Biochem. Physiol. 6:115125.CrossRefGoogle Scholar
26. St. John, J. B., Bartels, P. G., and Hilton, J. L. 1974. Surfactant effects on isolated plant cells. Weed Sci. 22:233237.Google Scholar
27. Sutton, D. L. and Foy, C. L. 1971. Effect of diquat and several surfactants on membrane permeability in red beet root tissue. Bot. Gaz. 132:299304.Google Scholar
28. Towne, C. A., Bartels, P. G., and Hilton, J. L. 1978. Interaction of surfactant and herbicide treatments on single cells of leaves. Weed Sci. 26:182188.CrossRefGoogle Scholar