Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T05:11:02.427Z Has data issue: false hasContentIssue false

Vitamin A activates rhodopsin and sensitizes it to ultraviolet light

Published online by Cambridge University Press:  22 December 2011

SADAHARU MIYAZONO*
Affiliation:
Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts Present address: Department of Sensory Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
TOMOKI ISAYAMA
Affiliation:
Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
FRANÇOIS C. DELORI
Affiliation:
Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
CLINT L. MAKINO
Affiliation:
Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
*
Address correspondence and reprint requests to: Sadaharu Miyazono, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles Street, Boston, MA 02114. E-mail: [email protected]

Abstract

The visual pigment, rhodopsin, consists of opsin protein with 11-cis retinal chromophore, covalently bound. Light activates rhodopsin by isomerizing the chromophore to the all-trans conformation. The activated rhodopsin sets in motion a biochemical cascade that evokes an electrical response by the photoreceptor. All-trans retinal is eventually released from the opsin and reduced to vitamin A. Rod and cone photoreceptors contain vast amounts of rhodopsin, so after exposure to bright light, the concentration of vitamin A can reach relatively high levels within their outer segments. Since a retinal analog, β-ionone, is capable of activating some types of visual pigments, we tested whether vitamin A might produce a similar effect. In single-cell recordings from isolated dark-adapted salamander green-sensitive rods, exogenously applied vitamin A decreased circulating current and flash sensitivity and accelerated flash response kinetics. These changes resembled those produced by exposure of rods to steady light. Microspectrophotometric measurements showed that vitamin A accumulated in the outer segments and binding of vitamin A to rhodopsin was confirmed in in vitro assays. In addition, vitamin A improved the sensitivity of photoreceptors to ultraviolet (UV) light. Apparently, the energy of a UV photon absorbed by vitamin A transferred by a radiationless process to the 11-cis retinal chromophore of rhodopsin, which subsequently isomerized. Therefore, our results suggest that vitamin A binds to rhodopsin at an allosteric binding site distinct from the chromophore binding pocket for 11-cis retinal to activate the rhodopsin, and that it serves as a sensitizing chromophore for UV light.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ala-Laurila, P., Cornwall, M.C., Crouch, R.K. & Kono, M. (2009). The action of 11-cis-retinol on cone opsins and intact cone photoreceptors. The Journal of Biological Chemistry 284, 1649216500.CrossRefGoogle ScholarPubMed
Batten, M.L., Imanishi, Y., Maeda, T., Tu, D.C., Moise, A.R., Bronson, D., Possin, D., Van Gelder, R.N., Baehr, W. & Palczewski, K. (2004). Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. The Journal of Biological Chemistry 279, 1042210432.CrossRefGoogle ScholarPubMed
Baylor, D.A. & Hodgkin, A.L. (1973). Detection and resolution of visual stimuli by turtle photoreceptors. The Journal of Physiology 234, 163198.Google Scholar
Bear, C.A., Kittredge, K.L., Klinger, A.L., Briercheck, D.M., Braiman, M.S. & Gonzalez-Fernandez, F. (1994). Expression and characterization of the fourth repeat of Xenopus interphotoreceptor retinoid-binding protein in E. coli. Current Eye Research 13, 391400.Google Scholar
Bowmaker, J.K. (2008). Evolution of vertebrate visual pigments. Vision Research 48, 20222041.Google Scholar
Brown, P.K., Gibbons, I.R. & Wald, G. (1963). The visual cells and visual pigment of the mudpuppy, Necturus. The Journal of Cell Biology 19, 79106.CrossRefGoogle ScholarPubMed
Christopoulos, A. & Kenakin, T. (2002). G protein-coupled receptor allosterism and complexing. Pharmacological Reviews 54, 323374.CrossRefGoogle ScholarPubMed
Cohen, G.B., Yang, T., Robinson, P.R. & Oprian, D.D. (1993). Constitutive activation of opsin: Influence of charge at position 134 and size at position 296. Biochemistry 32, 61116115.Google Scholar
Cornwall, M.C., MacNichol, E.F. Jr. & Fein, A. (1984). Absorptance and spectral sensitivity measurements of rod photoreceptors of the tiger salamander, Ambystoma tigrinum. Vision Research 24, 16511659.CrossRefGoogle ScholarPubMed
Crouch, R.K., Hazard, E.S., Lind, T., Wiggert, B., Chader, G. & Corson, D.W. (1992). Interphotoreceptor retinoid-binding protein and α-tocopherol preserve the isomeric and oxidation state of retinol. Photochemistry and Photobiology 56, 251255.Google Scholar
Daemen, F.J.M. (1978). The chromophore binding space of opsin. Nature 276, 847848.Google Scholar
Dean, D.M., Nguitragool, W., Miri, A., McCabe, S.L. & Zimmerman, A.L. (2002). All-trans-retinal shuts down rod cyclic nucleotide-gated ion channels: A novel role for photoreceptor retinoids in the response to bright light? Proceedings of the National Academy of Sciences of the United States of America 99, 83728377.Google Scholar
Denton, E.J. (1959). The contributions of the orientated photosensitive and other molecules to the absorption of whole retina. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 150, 7894.Google Scholar
Dowling, J.E. (1960). Chemistry of visual adaptation in the rat. Nature 188, 114118.Google Scholar
Eldred, G.E. & Lasky, M.R. (1993). Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361, 724726.Google Scholar
Fain, G.L., Matthews, H.R., Cornwall, M.C. & Koutalos, Y. (2001). Adaptation in vertebrate photoreceptors. Physiological Reviews 81, 117151.Google Scholar
Fleisch, V.C. & Neuhauss, S.C. (2010). Parallel visual cycles in the zebrafish retina. Progress in Retinal and Eye Research 29, 476486.Google Scholar
Fotiadis, D., Liang, Y., Filipek, S., Saperstein, D.A., Engel, A. & Palczewski, K. (2004). The G protein-coupled receptor rhodopsin in the native membrane. FEBS Letters 564, 281288.Google Scholar
Futterman, S. & Heller, J. (1972). The enhancement of fluorescence and the decreased susceptibility to enzymatic oxidation of retinol complexed with bovine serum albumin, β-lactoglobulin, and the retinol-binding protein of human plasma. The Journal of Biological Chemistry 247, 51685172.CrossRefGoogle Scholar
Goodman, D.S. & Leslie, R.B. (1972). Fluorescence studies of human plasma retinol-binding protein and of the retinol-binding protein-prealbumin complex. Biochimica et Biophysica Acta 260, 670678.Google Scholar
Govardovskii, V.I., Fyhrquist, N., Reuter, T., Kuzmin, D.G. & Donner, K. (2000). In search of the visual pigment template. Visual Neuroscience 17, 509528.Google Scholar
Hárosi, F.I. (1975). Absorption spectra and linear dichroism of some amphibian photoreceptors. The Journal of General Physiology 66, 357382.Google Scholar
He, Q., Alexeev, D., Estevez, M.E., McCabe, S.L., Calvert, P.D., Ong, D.E., Cornwall, M.C., Zimmerman, A.L. & Makino, C.L. (2006). Cyclic nucleotide-gated ion channels in rod photoreceptors are protected from retinoid inhibition. The Journal of General Physiology 128, 473485.Google Scholar
Heck, M., Schädel, S.A., Maretzki, D. & Hofmann, K.P. (2003). Secondary binding sites of retinoids in opsin: Characterization and role in regeneration. Vision Research 43, 30033010.Google Scholar
Horrigan, D.M., Tetreault, M.L., Tsomaia, N., Vasileiou, C., Borhan, B., Mierke, D.F., Crouch, R.K. & Zimmerman, A.L. (2005). Defining the retinoid binding site in the rod cyclic nucleotide-gated channel. The Journal of General Physiology 126, 453460.Google Scholar
Horwitz, J. & Heller, J. (1973). Interactions of all-trans, 9-, 11-, and 13-cis-retinal, all-trans-retinyl acetate, and retinoic acid with human retinol-binding protein and prealbumin. The Journal of Biological Chemistry 248, 63176324.Google Scholar
Hunt, D.M., Carvalho, L.S., Cowing, J.A. & Davies, W.L. (2009). Evolution and spectral tuning of visual pigments in birds and mammals. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 29412955.Google Scholar
Isayama, T., Chen, Y., Kono, M., Degrip, W.J., Ma, J.-X., Crouch, R.K. & Makino, C.L. (2006). Differences in the pharmacological activation of visual opsins. Visual Neuroscience 23, 899908.Google Scholar
Isayama, T., McCabe England, S.L., Crouch, R.K., Zimmerman, A.L. & Makino, C.L. (2009). β-ionone activates and bleaches visual pigment in salamander photoreceptors. Visual Neuroscience 26, 267274.Google Scholar
Jäger, S., Palczewski, K. & Hofmann, K.P. (1996). Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin. Biochemistry 35, 29012908.CrossRefGoogle ScholarPubMed
Jin, M., Li, S., Nusinowitz, S., Lloyd, M., Hu, J., Radu, R.A., Bok, D. & Travis, G.H. (2009). The role of interphotoreceptor retinoid-binding protein on the translocation of visual retinoids and function of cone photoreceptors. The Journal of Neuroscience 29, 14861495.Google Scholar
Jones, G.J., Cornwall, M.C. & Fain, G.L. (1996). Equivalence of background and bleaching desensitization in isolated rod photoreceptors of the larval tiger salamander. The Journal of General Physiology 108, 333340.CrossRefGoogle ScholarPubMed
Jones, G.J., Crouch, R.K., Wiggert, B., Cornwall, M.C. & Chader, G.J. (1989). Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Proceedings of the National Academy of Sciences of the United States of America 86, 96069610.Google Scholar
Kefalov, V.J., Cornwall, M.C. & Crouch, R.K. (1999). Occupancy of the chromophore binding site of opsin activates visual transduction in rod photoreceptors. The Journal of General Physiology 113, 491503.Google Scholar
Kefalov, V.J., Crouch, R.K. & Cornwall, M.C. (2001). Role of non-covalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors. Neuron 29, 749755.Google Scholar
Kefalov, V.J., Estevez, M.E., Kono, M., Goletz, P.W., Crouch, R.K., Cornwall, M.C. & Yau, K.-W. (2005). Breaking the covalent bond—A pigment property that contributes to desensitization in cones. Neuron 46, 879890.Google Scholar
Keirns, J.J., Miki, N., Bitensky, M.W. & Keirns, M. (1975). A link between rhodopsin and disc membrane cyclic nucleotide phosphodiesterase. Action spectrum and sensitivity to illumination. Biochemistry 14, 27602766.CrossRefGoogle ScholarPubMed
Kono, M., Goletz, P.W. & Crouch, R.K. (2008). 11-cis- and all-trans-retinols can activate rod opsin: Rational design of the visual cycle. Biochemistry 47, 75677571.Google Scholar
Lakowicz, J.R. (2006). Energy transfer. In Principles of Fluorescence Spectroscopy (3rd ed.), ed. Lakowicz, J.R., pp. 443475. New York: Springer.CrossRefGoogle Scholar
Lamb, T.D. & Pugh, E.N. Jr. (2004). Dark adaptation and the retinoid cycle of vision. Progress in Retinal and Eye Research 23, 307380.Google Scholar
Liebman, P.A. (1972). Microspectrophotometry of photoreceptors. In Handbook of Sensory Physiology, Vol. 7/1. Photochemistry of Vision, ed. Dartnall, H.J.A., pp. 481528. New York: Springer-Verlag.Google Scholar
Litman, B.J. (1982). Purification of rhodopsin by concanavalin A affinity chromatography. Methods in Enzymology 81, 150153.Google Scholar
Maeda, A., Golczak, M., Maeda, T. & Palczewski, K. (2009). Limited roles of Rdh8, Rdh12, and Abca4 in all-trans-retinal clearance in mouse retina. Investigative Ophthalmology & Visual Science 50, 54355443.Google Scholar
Maeda, A., Maeda, T., Golczak, M. & Palczewski, K. (2008). Retinopathy in mice induced by disrupted all-trans-retinal clearance. The Journal of Biological Chemistry 283, 2668426693.Google Scholar
Maeda, A., Maeda, T., Imanishi, Y., Sun, W., Jastrzebska, B., Hatala, D.A., Winkens, H.J., Hofmann, K.P., Janssen, J.J., Baehr, W., Driessen, C.A. & Palczewski, K. (2006). Retinol dehydrogenase (RDH12) protects photoreceptors from light-induced degeneration in mice. The Journal of Biological Chemistry 281, 3769737704.Google Scholar
Makino, C.L., Howard, L.N. & Williams, T.P. (1990). Axial gradients of rhodopsin in light-exposed retinal rods of the toad. The Journal of General Physiology 96, 11991220.Google Scholar
Makino, C.L., Riley, C.K., Looney, J., Crouch, R.K. & Okada, T. (2010). Binding of more than one retinoid to visual opsins. Biophysical Journal 99, 23662373.Google Scholar
Matsumoto, H. & Yoshizawa, T. (1975). Existence of a β-ionone ring-binding site in the rhodopsin molecule. Nature 258, 523526.Google Scholar
Matthews, R.G., Hubbard, R., Brown, P.K. & Wald, G. (1963). Tautomeric forms of metarhodopsin. The Journal of General Physiology 47, 215240.Google Scholar
May, L.T., Leach, K., Sexton, P.M. & Christopoulos, A. (2007). Allosteric modulation of G protein-coupled receptors. Annual Review of Pharmacology and Toxicology 47, 151.Google Scholar
McDowell, J.H. (1993). Preparing rod outer segment membranes, regenerating rhodopsin, and determining rhodopsin concentration. In Methods in Neurosciences, Vol. 15, ed. Hargrave, P.A., pp. 123130. San Diego, CA: Academic Press.Google Scholar
Mitchell, D.C., Niu, S.-L. & Litman, B.J. (2001). Optimization of receptor-G protein coupling by bilayer lipid composition I: Kinetics of rhodopsin-transducin binding. The Journal of Biological Chemistry 276, 4280142806.Google Scholar
Naka, K.I. & Rushton, W.A. (1966). S-potentials from colour units in the retina of fish (Cyprinidae). The Journal of Physiology 185, 536555.Google Scholar
Niu, S.-L., Mitchell, D.C. & Litman, B.J. (2001). Optimization of receptor-G protein coupling by bilayer lipid composition II: Formation of metarhodopsin II-transducin complex. The Journal of Biological Chemistry 276, 4280742811.Google Scholar
Podda, M., Weber, C., Traber, M.G. & Packer, L. (1996). Simultaneous determination of tissue tocopherols, tocotrienols, ubiquinols, and ubiquinones. Journal of Lipid Research 37, 893901.Google Scholar
Pugh, E.N. Jr. & Lamb, T.D. (2000). Phototransduction in vertebrate rods and cones: Molecular mechanisms of amplification, recovery and light adaptation. In Handbook of Biological Physics, Vol. 3, ed. Stavenga, D.G., DeGrip, W.J. & Pugh, E.N. Jr., pp. 183255. Amsterdam, The Netherlands: Elsevier Science BV.Google Scholar
Radda, G.K. & Smith, D.S. (1970). Retinol: A fluorescent probe for membrane lipids. FEBS Letters 9, 287289.CrossRefGoogle ScholarPubMed
Robeson, C.D., Cawley, J.D., Weisler, L., Stern, M.H., Eddinger, C.C. & Chechak, A.J. (1955). Chemistry of vitamin A. XXIV. The synthesis of geometric isomers of vitamin A via methyl β-methylglutaconate. Journal of the American Chemical Society 77, 41114119.Google Scholar
Saari, J.C., Nawrot, M., Garwin, G.G., Kennedy, M.J., Hurley, J.B., Ghyselinck, N.B. & Chambon, P. (2002). Analysis of the visual cycle in cellular retinol-binding protein type I (CRBPI) knockout mice. Investigative Ophthalmology & Visual Science 43, 17301735.Google ScholarPubMed
Saari, J.C., Nawrot, M., Kennedy, B.N., Garwin, G.G., Hurley, J.B., Huang, J., Possin, D.E. & Crabb, J.W. (2001). Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 29, 739748.Google Scholar
Sachs, K., Maretzki, D., Meyer, C.K. & Hofmann, K.P. (2000). Diffusible ligand all-trans-retinal activates opsin via a palmitoylation-dependent mechanism. The Journal of Biological Chemistry 275, 61896194.Google Scholar
Shichi, H., Lewis, M.S., Irreverre, F. & Stone, A.L. (1969). Biochemistry of visual pigments. I. Purification and properties of bovine rhodopsin. The Journal of Biological Chemistry 244, 529536.Google Scholar
Szuts, E.Z. & Hárosi, F.I. (1991). Solubility of retinoids in water. Archives of Biochemistry and Biophysics 287, 297304.Google Scholar
Towner, P., Gaertner, W., Walckhoff, B., Oesterhelt, D. & Hopf, H. (1981). Regeneration of rhodopsin and bacteriorhodopsin. The role of retinal analogues as inhibitors. European Journal of Biochemistry 117, 353359.CrossRefGoogle ScholarPubMed
van Breugel, P.J.G.M., Bovee-Geurts, P.H.M., Bonting, S.L. & Daemen, F.J.M. (1979). Biochemical aspects of the visual process. XL. Spectral and chemical analysis of metarhodopsin III in photoreceptor membrane suspensions. Biochimica et Biophysica Acta 557, 188198.Google Scholar
Vogt, K. (1989). Distribution of insect visual chromophores: Functional and phylogenetic aspects. In Facets of Vision, ed. Stavenga, D.G. & Hardie, R.C., pp. 134151. Berlin, Germany: Springer-Verlag.Google Scholar
Wang, J.-S. & Kefalov, V.J. (2010). The cone-specific visual cycle. Progress in Retinal and Eye Research 30, 115128.Google Scholar
Wang, Q., Schoenlein, R.W., Peteanu, L.A., Mathies, R.A. & Shank, C.V. (1994). Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science 266, 422424.Google Scholar
Weng, J., Mata, N.L., Azarian, S.M., Tzekov, R.T., Birch, D.G. & Travis, G.H. (1999). Insights into the function of rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98, 1323.Google Scholar
Yanamala, N. & Klein-Seetharaman, J. (2010). Allosteric modulation of G protein coupled receptors by cytoplasmic, transmembrane and extracellular ligands. Pharmaceuticals 3, 33243342.Google Scholar
Yoshizawa, T. & Fukada, Y. (1983). Activation of phosphodiesterase by rhodopsin and its analogues. Biophysics of Structure & Mechanism 9, 245258.Google Scholar
Supplementary material: File

Miyazono et al. supplementary material

Figure 1

Download Miyazono et al. supplementary material(File)
File 76.6 KB
Supplementary material: File

Miyazono et al. supplementary material

Figure 2

Download Miyazono et al. supplementary material(File)
File 478.5 KB
Supplementary material: File

Miyazono et al. supplementary material

Figure 3

Download Miyazono et al. supplementary material(File)
File 49.2 KB
Supplementary material: File

Miyazono et al. supplementary material

Figure 4

Download Miyazono et al. supplementary material(File)
File 60 KB
Supplementary material: File

Miyazono et al. supplementary material

Captions

Download Miyazono et al. supplementary material(File)
File 39.4 KB