Published online by Cambridge University Press: 02 June 2009
We have explored the visuotopic organization of the territory surrounding the middle suprasylvian sulcus (MSS) of cat cerebral cortex by electrophysiological mapping, and by tracing the topography of its cortical and subcortical connections using wheatgerm-agglutinin horseradish peroxidase (WGA-HRP). Observations from the two approaches were concordant, and confirmed the presence of two separate visual areas in the MSS that approximate, but do not exactly correspond, to the location and internal organization of the posterior medial and posterior lateral lateral suprasylvian (PMLS, PLLS) areas of Palmer et al. (1978).
We define as part of the lateral suprasylvian (LS) area the territory on the medial bank and caudal end of the lateral bank of the MSS that receives a topographically organized projection from the region of area 17 representing the lower visual quadrant. This territory is connected with other structures that are themselves striate-recipient (cortical areas 18 and 19, and the lateral division of the lateral posterior (LPI) nucleus), and with a variety of nuclei that receive direct retinal input, such as the C-laminae of the LGd, the medial interlaminar nucleus (MIN), and the superficial layers of the superior colliculus (SC). Its connections with the LP1, LGd, MIN, and SC correspond topographically with the input from area 17. Revised maps of area LS were produced from the physiological and connectional data: its rostral border is formed by a representation of lower visual elevations with the horizontal meridian represented caudally, and its lateral border is formed by the vertical meridian; area LS shares a representation of the center of gaze with the visual area of the lateral bank at its caudal end.
The adjacent lateral bank area has larger receptive fields than area LS, and very different connectivity. It receives no input from area 17 and little input from striate-recipient structures, including area LS, but instead is connected to more remote extrastriate visual areas, such as the anterior ectosylvian visual (AEV) area in insular cortex, and to zones of the thalamus in receipt of tectal input (LPm and the lateromedial-suprageniculate nuclear complex). According to both mapping approaches, the lateral bank area contains representations of both the upper and lower visual quadrants but a rather limited degree of visuotopic order. We refer to it as the posterior ectosylvian visual (PEV) area, because it appears to be functionally and connectionally dissociated from area LS, but is possibly a functional antecedent of area AEV.