Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T04:43:09.276Z Has data issue: false hasContentIssue false

Visual pigments in the sea lamprey, Petromyzon marinus

Published online by Cambridge University Press:  02 June 2009

Ferenc I. Hárosi
Affiliation:
Laboratory of Sensory Physiology, Marine Biological Laboratory, Woods Hole, and Department of Physiology, Boston University School of Medicine, Boston
Jochen Kleinschmidt
Affiliation:
Department of Ophthalmology, New York University Medical Center, New York

Abstract

We present microspectrophotometric evidence for the existence of two distinct visual pigments residing in two different morphological types of photoreceptor of the sea lamprey. In the upstream migrant Petromyzon marinus, the pigment found in short receptors has a wavelength of peak absorbance (λmax) of 525 nm, whereas the pigment located in long receptors has a λmax of 600 nm. Although the former appears to be pure porphyropsin, the latter is akin to visual pigments found in the red-absorbing cones of amphibian and teleost retinae. The kinship is more than superficial pertaining to λmax of the a–band absorbance to its native maximum value. The presence of an anion-sensitive and an anion-insensitive pigment in a retina implies the expression of two distinct opsin genes. We infer this from several examples of correlation between anion sensitivity and opsin sequence groupings. Moreover, the presence of two distinct opsin genes expressed throughout six vertebrate classes implies their existence in a common ancestor to all.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bridges, C.D.B. (1967). Spectroscopic properties of porphyropsins. Vision Research 7, 349369.CrossRefGoogle ScholarPubMed
Crescitelli, F. (1972). The visual cells and visual pigments of the vertebrate eye. In Handbook of Sensory Physiology, Vol. VII/I. Photochemistry of Vision, ed. Dartnall, H.J.A., pp. 245363. New York: Springer.Google Scholar
Crescitelli, F. (1977). Ionochromic behavior of gecko visual pigments. Science 195, 187188.CrossRefGoogle Scholar
Crescitelli, F. (1978). The chloride ionochromic response: An in situ effect Vision Research 18, 14211422.Google Scholar
Crescitelli, F. (1982). Some non-rhodopsin-like properties of a gecko visual pigment. In Methods in Enzymology, Vol. 81. Biomembranes, Part H. Visual Pigments and Purple Membranes, I. ed. Packer, L., pp. 172181. New York: Academic Press.Google Scholar
Crescitelli, F. & Karvaly, B. (1983). The gecko visual pigment: Its photosensitivity and the effect of chloride and nitrate ions Proceedings of the Royal Society B (London) 220, 6987.Google ScholarPubMed
Crescitelli, F. & Karvaly, B. (1991). The gecko visual pigment: The anion hypsochromic effect. Vision Research 31, 945950.Google Scholar
Dartnall, H.J.A. & Lythgoe, J.N. (1965). The spectral clustering of visual pigments. Vision Research 5, 81100.CrossRefGoogle ScholarPubMed
Dickson, D.H. & Graves, D.A. (1979). Fine structure of the lamprey photoreceptors and retinal pigment epithelium (Petromyzon marinus L.) Experimental Eye Research 29, 4560.Google Scholar
Fager, L.Y. & Fager, R.S. (1979). Halide control of color of the chicken cone pigment iodopsin. Experimental Eye Research 29, 401408.CrossRefGoogle ScholarPubMed
Govardovskii, V.I. & Lychakov, D.V. (1984). Visual cells and visual pigments of the lamprey, Lampetra fluviatilis Journal of Comparative Physiology A 154, 279286.Google Scholar
HáRosi, F.I. (1987). Cynomolgus and rhesus monkey visual pigments: Application of Fourier transform smoothing and statistical tech-niques to the determination of spectral parameters. Journal of Gen-eral Physiology 89, 717743.CrossRefGoogle Scholar
Hárosi, F.I. & MacNichol, E.F. Jr, (1974). Visual pigments of goldfish cones: Spectral properties and dichroism. Journal of General Physiology 63, 279304.Google Scholar
Hisatomi, O., Iwasa, T., Tokunaga, F. & Yasui, A. (1991). Isolation and characterization of lamprey rhodopsin cDNA. Biochemical and Biophysical Research Communications 174, 11251132.CrossRefGoogle ScholarPubMed
Holmberg, K., öhman, P. & Dreyfert, T. (1977). ERG-recordings from the retina of the river lamprey (Lampetra fluviatilis) Vision Research 17, 715717.Google Scholar
Ishikawa, M., Takao, M., Washioka, H., Tokunaga, F., Watanabe, H. & Tonosaki, A. (1987). Demonstration of rod and cone photoreceptors in the lamprey retina by freezereplication and immunofluorescence. Cell and Tissue Research 249, 241246.CrossRefGoogle ScholarPubMed
Kleinschmtdt, J. & H´arosi, F.I. (1992 a). Spectral tuning of red-absorbing cone pigments by anions Investigative Ophthalmology and Visual Science (Suppl.) 33(4), 1003.Google Scholar
Kleinschmidt, J. & Hárosi, F.I. (1992 b). Anion sensitivity and spectral tuning of cone visual pigments in situ. Proceedings of the National Academy of Sciences of the U.S.A. 89, 91819185.CrossRefGoogle ScholarPubMed
Knowles, A. (1976). The effect of chloride ion upon chicken visual pig-ments. Biochemical and Biophysical Research Communications 73, 5662.CrossRefGoogle Scholar
Knowles, A. (1980). The chloride effect in chicken red cone receptors. Vision Research 20, 475483.CrossRefGoogle ScholarPubMed
Kojima, D., Okano, T., Fukada, Y., Shichida, Y., Yoshizawa, T. & Ebrey, T.G. (1992). Cone visual pigments are present in gecko rod cells. Proceedings of the National Academy of Sciences of the U.S.A. 89, 68416845.CrossRefGoogle ScholarPubMed
Nathans, J., Thomas, D. & Hogness, D.S. (1986). Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science, 232, 193202.CrossRefGoogle ScholarPubMed
Neitz, M., Neitz, J. & Jacobs, G.H. (1991). Spectral tuning of pig-ments underlying red-green color vision. Science 252, 971974.CrossRefGoogle Scholar
Novitskii, I. Yu., Zak, P.P. & Ostrovskii, M.A. (1989). The effect of anions on absorption spectrum of the longwavelength retinal-containing pigment iodopsin in native frog cones (A microspectrophotometric study). Bioorganic Chemistry 15, 10371043 (in Russian).Google Scholar
Okano, T., Kojima, D., Fukada, Y., Shichida, Y. & Yoshizawa, T. (1992). Primary structure of chicken cone visual pigments: Vertebrate rhodopsins have evolved out of cone visual pigments. Proceedings of the National Academy of Sciences of the U.S.A. 89, 59325936.CrossRefGoogle ScholarPubMed
öhman, P. (1976). Fine structure of photoreceptors and associated neurons in the retina of Lampetra fluviatilis (Cyclostomi). Vision Research 16, 659662.CrossRefGoogle ScholarPubMed
Wald, G. (1942). The visual system and vitamins A of the sea lamprey. Journal of General Physiology 25, 331336.Google Scholar
Wald, G. (1957). The metamorphosis of visual systems in the sea lam-prey. Journal of General Physiology 40, 901914.Google Scholar
Walls, G.L. (1935). The visual cells of lampreys. British Journal of Ophthalmology 19, 129148.CrossRefGoogle ScholarPubMed
Yokoyama, R. & Yokoyama, S. (1990). Convergent evolution of the red- and greenlike visual pigment genes in fish, Astyanax fascia-tus, and human. Proceedings of the National Academy of Sciences of the U.S.A. 87, 93159318.Google Scholar