Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T05:12:31.340Z Has data issue: false hasContentIssue false

Visual contrast sensitivity alterations in inferred magnocellular pathways and anomalous perceptual experiences in people at high-risk for psychosis

Published online by Cambridge University Press:  19 July 2007

SZABOLCS KÉRI
Affiliation:
Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
GYÖRGY BENEDEK
Affiliation:
University of Szeged, Department of Physiology, Szeged, Hungary

Abstract

Evidence suggests that patients with schizophrenia show impaired performances on tests assessing the magnocellular (M) visual pathway. The aim of this study was to investigate M pathway functioning in persons at high-risk of psychosis. Sixteen high-risk persons at the prodromal phase of psychosis and 20 healthy controls participated. Two types of contrast sensitivity measurements were used, during which participants were asked to detect a briefly presented target Gabor patch. In the pulsed-pedestal paradigm, the luminance of the background field was decreased to saturate M pathways and to bias information processing to parvocellular (P) pathways. In the steady-pedestal paradigm, the luminance of the background field was constant and briefly presented targets were processed by the M pathway. Anomalous perceptual experiences were assessed using the Structured Interview for Assessing Perceptual Anomalies (SIAPA). Results revealed that the high-risk persons showed elevated contrast sensitivity during the M pathway test, and normal sensitivity during the P pathway test. The visual SIAPA scores showed significant positive correlations with the M pathway sensitivity values. These results suggest that the high-risk mental state is associated with hyper-reactive M pathways, which may be responsible for some anomalous perceptual experiences, including abnormal intensity of environmental stimuli, feelings of being flooded and inundated, and inability to focus attention to relevant details.

Type
Research Article
Copyright
2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, K.R., Barnes, C.S., Fishman, G.A., Pokorny, J. & Smith, V.C. (2005). Contrast sensitivity deficits in inferred magnocellular and parvocellular pathways in retinitis pigmentosa. Investigative Ophthalmology and Visual Science 45, 45104519.Google Scholar
Bedwell, J.S., Brown, J.M. & Miller, L.S. (2003). The magnocellular visual system and schizophrenia: What can the color red tell us? Schizophrenia Research 63, 273284.Google Scholar
Braff, D.L. & Saccuzzo, D.P. (1982). Effect of antipsychotic medication on speed of information processing in schizophrenic patients. American Journal of Psychiatry 139, 11271130.Google Scholar
Braus, D.F., Weber-Fahr, W., Tost, H., Ruf, M. & Henn, F.A. (2002). Sensory information processing in neuroleptic-naive first-episode schizophrenic patients: A functional magnetic resonance imaging study. Archives of General Psychiatry 59, 696701.CrossRefGoogle Scholar
Brewer, W.J., Wood, S.J., Phillips, L.J., Francey, S.M., Pantelis, C., Yung, A.R., Cornblatt, B. & McGorry, P.D. (2006). Generalized and specific cognitive performance in clinical high-risk cohorts: A review highlighting potential vulnerability markers for psychosis. Schizophrenia Bulletin 32, 538555.Google Scholar
Bunney, W.E., Jr., Hetrick, W.P., Bunney, B.G., Patterson, J.V., Jin, Y., Potkin, S.G. & Sandman, C.A. (1999). Structured Interview for Assessing Perceptual Anomalies (SIAPA). Schizophrenia Bulletin 25, 577592.CrossRefGoogle Scholar
Butler, P.D., Schechter, I., Zemon, V., Schwartz, S.G., Greenstein, V.C., Gordon, J., Schroeder, C.E. & Javitt, D.C. (2001). Dysfunction of early-stage visual processing in schizophrenia. American Journal of Psychiatry 158, 11261133.CrossRefGoogle Scholar
Butler, P.D., DeSanti, L.A., Maddox, J., Harkavy-Friedman, J.M., Amador, X.F., Goetz, R.R., Javitt, D.C. & Gorman, J.M. (2003). Visual backward-masking deficits in schizophrenia: Relationship to visual pathway function and symptomatology. Schizophrenia Research 59, 199209.CrossRefGoogle Scholar
Butler, P.D., Zemon, V., Schechter, I., Saperstein, A.M., Hoptman, M.J., Lim, K.O., Revheim, N., Silipo, G. & Javitt, D.C. (2005). Early-stage visual processing and cortical amplification deficits in schizophrenia. Archives of General Psychiatry 62, 495504.CrossRefGoogle Scholar
Callaway, E.M. (2005). Structure and function of parallel pathways in the primate early visual system. Journal of Physiology 566, 1319.CrossRefGoogle Scholar
Chen, Y., Nakayama, K., Levy, D.L., Matthysse, S. & Holzman, P.S. (1999). Psychophysical isolation of a motion-processing deficit in schizophrenics and their relatives and its association with impaired smooth pursuit. Proceedings of the National Academy of Sciences of the USA 96, 47244729.CrossRefGoogle Scholar
Chen, Y., Levy, D.L., Sheremata, S., Nakayama, K., Matthysse, S. & Holzman, P.S. (2003). Effects of typical, atypical, and no antipsychotic drugs on visual contrast detection in schizophrenia. American Journal of Psychiatry 160, 17951801.CrossRefGoogle Scholar
Delord, S., Ducato, M.G., Pins, D., Devinck, F., Thomas, P., Boucart, M. & Knoblauch, K. (2006). Psychophysical assessment of magno- and parvocellular function in schizophrenia. Visual Neuroscience 23, 645650.CrossRefGoogle Scholar
Green, M.F., Nuechterlein, K.H. & Mintz, J. (1994). Backward masking in schizophrenia and mania. II. Specifying the visual channels. Archives of General Psychiatry 51, 945951.CrossRefGoogle Scholar
Hawkins, K.A., Addington, J., Keefe, R.S., Christensen, B., Perkins, D.O., Zipurksy, R., McGorry, P.D., Yung, A.R. & Phillips, L.J. (2003). The “close-in” or ultra high-risk model: A safe and effective strategy for research and clinical intervention in prepsychotic mental disorder. Schizophrenia Bulletin 29, 771790.Google Scholar
Kéri, S., Antal, A., Benedek, G. & Janka, Z. (2000). Contrast detection in schizophrenia. Archives of General Psychiatry 57, 995996.CrossRefGoogle Scholar
Kéri, S., Antal, A., Szekeres, G., Benedek, G. & Janka, Z. (2002). Spatiotemporal visual processing in schizophrenia. Journal of Neuropsychiatry and Clinical Neuroscience 14, 190196.CrossRefGoogle Scholar
Kéri, S., Kelemen, O., Benedek, G. & Janka, Z. (2004). Vernier threshold in patients with schizophrenia and in their unaffected siblings. Neuropsychology 18, 537542.CrossRefGoogle Scholar
Kéri, S., Kiss, I., Kelemen, O., Benedek, G. & Janka, Z. (2005). Anomalous visual experiences, negative symptoms, perceptual organization and the magnocellular pathway in schizophrenia: A shared construct? Psychological Medicine 35, 14451555.Google Scholar
Klosterkötter, J., Hellmich, M., Steinmeyer, E.M. & Schultze-Lutter, F. (2001). Diagnosing schizophrenia in the initial prodromal phase. Archives of General Psychiatry 58, 158164.CrossRefGoogle Scholar
Leonova, A., Pokorny, J. & Smith, V.C. (2003). Spatial frequency processing in inferred PC- and MC-pathways. Vision Research 43, 21332139.CrossRefGoogle Scholar
Merritt, R.D. & Balogh, D.W. (1989). Backward masking spatial frequency effects among hypothetically schizotypal individuals. Schizophrenia Bulletin 15, 573583.CrossRefGoogle Scholar
O'Donnell, B.F., Swearer, J.M., Smith, L.T., Nestor, P.G., Shenton, M.E. & McCarley, R.W. (1996). Selective deficits in visual perception and recognition in schizophrenia. American Journal of Psychiatry 153, 687692.Google Scholar
Parnas, J., Vianin, P., Saebye, D., Jansson, L., Volmer-Larsen, A. & Bovet, P. (2001). Visual binding abilities in the initial and advanced stages of schizophrenia. Acta Psychiatrica Scandinavica 103, 171180.CrossRefGoogle Scholar
Phillipson, O.T. & Harris, J.P. (1985). Perceptual changes in schizophrenia: A questionnaire survey. Psychological Medicine 15, 859866.CrossRefGoogle Scholar
Pokorny, J. & Smith, V.C. (1997). Psychophysical signatures associated with magnocellular and parvocellular pathway contrast gain. Journal of Optical Society of America 14, 24772486.CrossRefGoogle Scholar
Sheehan, D.V., Lecrubier, Y., Sheehan, K.H., Amorim, P., Janavs, J., Weiller, E., Hergueta, T., Baker, R. & Dunbar, G.C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry 59 (suppl. 20), 2233.Google Scholar
Sincich, L.C. & Horton, J.C. (2005). The circuitry of V1 and V2: Integration of color, form, and motion. Annul Review of Neuroscience 28, 303326.CrossRefGoogle Scholar
Slaghuis, W.L. (1998). Contrast sensitivity for stationary and drifting spatial frequency gratings in positive- and negative-symptom schizophrenia. Journal of Abnormal Psychology 107, 4962.CrossRefGoogle Scholar
Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Research 35, 25032522.CrossRefGoogle Scholar
Van Essen, D.C. & Gallant, J.L. (1994). Neural mechanisms of form and motion processing in the primate visual system. Neuron 13, 110.Google Scholar
Vidyasagar, T.R. (1999). A neuronal model of attentional spotlight: Parietal guiding the temporal. Brain Research Reviews 30, 6676.CrossRefGoogle Scholar
Wechsler, D. (1981). Wechsler Adult Intelligence Scale–Revised Manual. New York, NY: Psychological Corporation.
Yung, A.R., Phillips, L. & McGorry, P.D. (2004). Treating schizophrenia in the prodromal phase. London: Taylor & Francis.CrossRef
Yung, A.R., Yuen, H.P., McGorry, P.D., Phillips, L.J., Kelly, D., Dell'Olio, M., Francey, S.M., Cosgrave, E.M., Killackey, E., Stanford, C., Godfrey, K. & Buckby, J. (2005). Mapping the onset of psychosis: The Comprehensive Assessment of At-Risk Mental States. Australian and New Zeeland Journal of Psychiatry 39, 964971.CrossRefGoogle Scholar