Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T11:58:54.807Z Has data issue: false hasContentIssue false

Visual callosal projections in the adult ferret

Published online by Cambridge University Press:  02 June 2009

Antony M. Grigonis
Affiliation:
Department of Anatomy, Hahnemann University, Philadelphia
Rosemary B. Rayos Del Sol-Padua
Affiliation:
Department of Pediatrics, Medical College of Pennsylvania/EPPl, Philadelphia
E. Hazel Murphy
Affiliation:
Department of Anatomy and Neurobiology, Medical College of Pennsylvania/EPPI, Philadelphia

Abstract

The laminar and tangential organization of visual callosal projections of areas 17 and 18 were investigated in the adult ferret, using histochemical methods to visualize axonally transported horseradish peroxidase (HRP). Normal adult ferrets were given injections of HRP throughout one visual cortex or had gelfoam soaked in HRP applied to the transected corpus callosum. The ferret callosal cell distribution has a greater tangential extent in area 18 than in area 17. In addition, the radial organization of callosal cells in areas 17 and 18 differs: three times as many infragranular cells are present in area 18 than in area 17, although the number of supragranular cells is similar for both areas 17 and 18. Since the projections of alpha retinal ganglion cells are reported to be exclusively contralateral in the ferret (Vitek et al., 1985), callosal projections may make a major contribution to the binocularity of neurons in area 18.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berlucchi, G., Gazzaniga, M.S. & Rizzolatti, G. (1967). Microelectrode analysis of transfer of visual information by the corpus callosum. Archives Italiennes de Biologie 105, 583596.Google ScholarPubMed
Berlucchi, G. & Rizzolatti, G. (1968). Binocularly driven neurons in visual cortex of split-chiasm cats. Science 159, 308310.Google Scholar
Blakemore, C., Diano, Y., Pu, M., Wang, Y. & Xiao, Y. (1983). Possible functions of the interhemispheric connections between visual cortical areas in the cat. Journal of Physiology (London) 337, 334349.CrossRefGoogle ScholarPubMed
Bugbee, N.M. & Goldman-Rakic, P.S. (1983). Columnar organization of corticocortical projections in squirrel and rhesus monkeys: Similarity of column width in species differing in cortical volume. Journal of Comparative Neurology 220, 355364.CrossRefGoogle ScholarPubMed
Choudhury, B.P., Whitteridge, D. & Wilson, M.E. (1965). The function of the callosal connections of the visual cortex. Quarterly Journal of Experimental Physiology 50, 214219.CrossRefGoogle ScholarPubMed
Cusick, C.G., Gould, H.J. III & Kaas, J.H. (1984). Interhemispheric connections of visual cortex o f owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus). Journal of Comparative Neurology 230, 311336.CrossRefGoogle Scholar
Elberger, A.J. & Smith, E.L., III. (1985). The critical period for corpus callosum to affect cortical binocularity. Experimental Brain Research 57, 213223.CrossRefGoogle ScholarPubMed
Gould, H.G., III. (1984). Interhemispheric connections of the visual cortex in the grey squirrel (Sciurus carolinensis). Journal of Comparative Neurology 223, 259301.CrossRefGoogle ScholarPubMed
Itoh, K., Konishi, A., Nomura, N., Mizung, N., Nakamura, Y. & Sugimoto, T. (1979). Application of coupled oxidation reaction to electron microscopic demonstration of horseradish peroxidase: Cobalt-glucose oxidase method. Brain Research 175, 341346.Google Scholar
Jackson, C.A., Peduzzi, J.D. & Hickey, T.L. (1989). Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons. Journal of Neuroscience 9, 12421253.CrossRefGoogle ScholarPubMed
Kennedy, H., Dehay, C. & Bullier, J. (1986). The organization of the callosal connections of visual areas in VI and V2 in the monkey. Journal of Comparative Neurology 254, 2033.Google Scholar
Law, M.I., Zahs, K.R. & Stryker, M.P. (1988). Organization of primary visual cortex (area 17) in the ferret. Journal of Comparative Neurology 278, 157180.CrossRefGoogle ScholarPubMed
Linden, D.C., Guulery, R.W. & Cuchiaro, J. (1981). The dLGN of the normal ferret and its postnatal development. Journal of Comparative Neurology 203, 189211.CrossRefGoogle Scholar
Mesulam, M.M. (1978). Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: A non-carcinogenic blue visualizing afferents and efferents. Journal of Histochemistry and Cytochemistry 26, 106117.CrossRefGoogle ScholarPubMed
Morgan, J.E., Henderson, Z. & Thompson, I.D. (1987). Retinal decussation patterns in pigmented and albino ferrets. Neuroscience 20, 519535.CrossRefGoogle ScholarPubMed
Payne, B.R. (1986). Role of callosal cells in the functional organization of cat striate cortex. In Two Hemispheres—One Brain. Function of the Corpus Callosum, ed. Jasper, H.H., Tito, M.P. & Lepov, F. pp. 212254. New York: Alan R. Liss.Google Scholar
Payne, B.R., Elberger, A.J., Berman, N. & Murphy, E.H. (1980). Binocularity in the cat visual cortex is reduced by sectioning the corpus callosum. Science 207, 10971099.CrossRefGoogle ScholarPubMed
Pritzel, M., Kretz, R. & Rager, G. (1988). Callosal projections between areas 17 in the adult tree shrew (Tupaia belangeri). Experimental Brain Research 72, 481493.CrossRefGoogle ScholarPubMed
Redies, C., Diksic, M. & Rimi, H. (1990). Functional organization in the ferret visual cortex: a double-label 2-deoxyglucose study. Journal of Neuroscience 10, 27912803.CrossRefGoogle ScholarPubMed
Rockland, K.S. (1985). Anatomical organization of primary visual cortex (area 17) in the ferret. Journal of Comparative Neurology 241, 225236.CrossRefGoogle ScholarPubMed
Sanderson, K.J. (1971). The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. Journal of Comparative Neurology 143, 101117.CrossRefGoogle Scholar
Segraves, M.A. & Rosenquist, A.C. (1982). The distributions of the cells of origin of callosal projections in cat visual cortex. Journal of Neuroscience 2, 10791089.Google Scholar
Sherman, S.M. (1985). Functional organization of the W-, X-, and Y-cell pathways in the cat. A review and hypothesis. Progress in Psychobiology in Psychology 2, 233313.Google Scholar
Stone, J., Campion, J.E. & Leicester, J. (1978). The nasotemporal division of the retina in the Siamese cat. Journal of Comparative Neurology 180, 783789.CrossRefGoogle ScholarPubMed
Vitek, D. J., Scholl, J.D. & Leventhal, A.G. (1985). Morphology and central projections and dendritic field orientation of retinal ganglion cells in the ferret. Journal of Comparative Neurology 241, 111.CrossRefGoogle ScholarPubMed
Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research 171, 1128.Google Scholar
Zahs, K.R. & Stryker, M.P. (1985). The projection of the visual field onto the lateral geniculate nucleus of the ferret. Journal of Comparative Neurology 241, 210224.CrossRefGoogle ScholarPubMed