Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T02:29:04.109Z Has data issue: false hasContentIssue false

Transfer of contrast sensitivity in linear visual networks

Published online by Cambridge University Press:  02 June 2009

Andrew B. Watson
Affiliation:
Vision Group, NASA Ames Research Center, Moffett Field

Abstract

Contrast sensitivity is a useful measure of the ability of an observer to distinguish contrast signals from noise. Although usually applied to human observers, contrast sensitivity can also be defined operationally for individual visual neurons. In a model linear neuron consisting of a filter and noise source, this operational measure is a function of filter gain, noise power spectrum, signal duration, and a performance criterion. This definition allows one to relate the sensitivities of linear neurons at different levels in the visual pathway. Mathematical formulae describing these relationships are derived, and the general model is applied to the specific problem of relating the sensitivities of parvocellular LGN neurons and cortical simple cells in the primate.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, D.G., Farrar, S. & Hamilton, D.B. (1984). Spatial contrast adaptation characteristics of neurons recorded in the cat's visual cortex. Journal of Physiology (London) 347, 713739.Google Scholar
Baker, C.L. Jr (1990). Spatial- and temporal-frequency selectivity as a basis for velocity preference in cat striate cortex neurons. Visual Neuroscience 4, 101113.CrossRefGoogle ScholarPubMed
Banks, M.S., Geisler, W.S. & Bennett, P.J. (1987). The physical limits of grating visibility. Vision Research 27(11), 19151924.CrossRefGoogle ScholarPubMed
Banks, M.S., Sekuler, A.B. & Anderson, S.J. (1991). Peripheral spatial vision: Limits imposed by optics, photoreceptors, and receptor pooling. Journal of the Optical Society of America A (in press).CrossRefGoogle ScholarPubMed
Derrington, A.M. & Lennie, P. (1982). The influence of temporal frequency and adaptation level on receptive field organization of retinal ganglion cells in cat. Journal of Physiology (London) 333, 343366.Google Scholar
Derrington, A.M. & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology (London) 357, 219240.Google Scholar
De Valois, R.L., Albrecht, D.G. & Thorell, L.G. (1982). Spatial frequency selectivity of cells in macaque visual cortex. Visual Research 22, 545559.Google ScholarPubMed
De Valois, R.L., Morgan, H.C. & Snodderly, D.M. (1974). Psychophysical studies of monkey vision – III. Spatial luminance contrast sensitivity tests of macaque and human observers. Vision Research 14, 7582.CrossRefGoogle Scholar
Enroth-Cugell, C. & Robson, J.G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology (l) 187, 517552.Google Scholar
Enroth-Cugell, C., Robson, J.G., Schweitzer-Tong, D. & Watson, A.B. (1983). Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation. Journal of Physiology (London), 341, 279307.Google Scholar
Field, D.J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America A 4(12), 23792394.CrossRefGoogle ScholarPubMed
Foster, K.H., Gaska, J.P., Nagler, M. & Pollen, D.A. (1985). Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. Journal of Physiology (London), 365, 331363.Google Scholar
Frishman, L.J., Freeman, A.W., Troy, J.B., Schweitzer-Tong, D.E. & Enroth-Cugell, C. (1987). Spatiotemporal frequency responses of cat retinal ganglion cells. Journal of General Physiology 89, 599628.CrossRefGoogle ScholarPubMed
Hamilton, D.B., Albrecht, D.G. & Geisler, W.S. (1989). Visual cortical receptive fields in monkey and cat: spatial and temporal phase transfer function. Vision Research 29(10), 12851308.CrossRefGoogle ScholarPubMed
Hawken, M.J. & A.J., Parker (1984). Contrast sensitivity and orientation selectivity in lamina IV of the striate cortex of Old World monkeys. Experimental Brain Research 54, 367372.CrossRefGoogle ScholarPubMed
Hawken, M.J. & Parker, A.J. (1987). Spatial properties of neurons in the monkey striate cortex. Proceedings of the Royal Society B (London) 231, 251288.Google Scholar
Hawken, M.J. & Parker, A.J. (1990). Detection and discrimination mechanisms in the striate cortex of the Old-World monkey. In Vision: Coding and Efficiency, ed. Blakemore, C.B., pp. 103116. Cambridge: Cambridge University Press.Google Scholar
Hawken, M.J., Parker, A.J. & Lund, J.S. (1988). Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the old world monkey. Journal of Neuroscience 8(10), 35413548.CrossRefGoogle ScholarPubMed
Heeger, D.J. (1991). Computational model of cat striate physiology. In Computational Models of Visual Perception ed., Movshon, J.A. & Landy, M., Cambridge: MIT Press (in press).Google Scholar
Jones, J.P. & Palmer, L.A. (1987). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58(6), 12331258.CrossRefGoogle ScholarPubMed
Kaplan, E. & Shapley, R.M. (1986). The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proceedings of the National Academy of Sciences of the U.S.A. 83, 27552757.CrossRefGoogle ScholarPubMed
Linsenmeier, R.A., Frishman, L.J., Jakiela, H.G. & Enrothcugell, C. (1982). Receptive field properties of X and Y cells in the cat retina derived from contrast sensitivity measurements. Vision Research 22, 11731183.CrossRefGoogle ScholarPubMed
Maddess, T., Mccourt, M.E., Blakeslee, B. & Cunningham, R.B. (1988). Factors governing the adaptation of cells in area-17 of the cat visual cortex. Biological Cybernetics 59, 229236.CrossRefGoogle ScholarPubMed
Mastronarde, D.N. (1983). Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. Journal of Neurophysiology 49(2), 303324.CrossRefGoogle Scholar
Mastronarde, D.N. (1989). Correlated firing of retinal ganglion cells. Trends in Neuroscience 12(2), 7580.CrossRefGoogle ScholarPubMed
Merigan, W.H. & Eskin, T.A. (1986). Spatio-temporal vision of macaques with severe loss of P-beta retinal ganglion cells. Vision Research 26, 17511761.CrossRefGoogle ScholarPubMed
Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978). Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. Journal of Physiology (London) 283, 101120.Google Scholar
Ohzawa, I. & Freeman, R.D. (1985). Contrast gain control in the cat visual system. Journal of Neurophysiology 54, 651665.CrossRefGoogle Scholar
Packer, O., Hendrickson, A. & Curcio, C.A. (1989). Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina). Journal of Comparative Neurology 288, 165183.CrossRefGoogle ScholarPubMed
Papoulis, A. (1965). Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill.Google Scholar
Pelli, D.G. (1990). The quantum efficiency of vision. In Vision: Coding and Efficiency, ed. Blakemore, C.B.Cambridge, U.K.: Cambridge University Press.Google Scholar
Pointer, J.S. & Hess, R.F. (1990). The contrast sensitivity gradient across the major oblique meridians of the human visual field. Vision Research 30(3), 497501.CrossRefGoogle ScholarPubMed
Purpura, K., Kaplan, E. & Shapley, R.M. (1988). Background light and the contrast gain of primate P and M retinal ganglion cells. Proceedings of the National Academy of Sciences of the U.S.A. 85, 45354537.CrossRefGoogle ScholarPubMed
Purpura, K., Tranchina, D., Kaplan, E. & Shapley, R.M. (1990). Light adaptation in the primate retina: Analysis of changes in gain and dynamics of monkey retinal ganglion cells. Visual Neuroscience 4, 7593.CrossRefGoogle ScholarPubMed
Robson, J.G. & Troy, J.B. (1987). Nature of the maintained discharge of Q, X, and Y retinal ganglion cells in the cat. Journal of the Optical Society of America A 4, 23012307.CrossRefGoogle Scholar
Samy, C.N. & Hirsch, J. (1989). Comparison of human and monkey retinal photoreceptor sampling mosaics. Visual Neuroscience 3, 281285.CrossRefGoogle ScholarPubMed
Sclar, G., Maunsell, J.H.R. & Lennie, P. (1990). Coding of image contrast in central visual pathways of the macaque monkey. Vision Research 30(1), 110.CrossRefGoogle ScholarPubMed
Tanaka, K. (1985). Organization of geniculate inputs to visual cortical cells in the cat. Vision Research 25(3), 357364.CrossRefGoogle ScholarPubMed
Tolhurst, D.J. & Movshon, J.A. (1975). Spatial and temporal contrast sensitivity of striate cortical neurons. Nature 257, 674675.CrossRefGoogle Scholar
Troy, J.B. (1983a). Spatial contrast sensitives of X and Y type neurones in the cat's dorsal lateral geniculate nucleus. Journal of Physiology (London) 344, 399417.Google Scholar
Troy, J.B. (1983b). Spatio-temporal interaction in neurones of the cat's dorsal lateral geniculate nucleus. Journal of Physiology (London) 344, 419432.Google Scholar
Troy, J.B. & Enroth-Cugell, C. (1989). Dependence of center radius on temporal frequency for the receptive fields of X retinal ganglion cells of cat. Journal of General Physiology 94, 987995.CrossRefGoogle ScholarPubMed
Watson, A.B. (1987). Estimation of local spatial scale. Journal of the Optical Society of America A 4, 15791582.CrossRefGoogle ScholarPubMed
Watson, A.B. (1990). Gain, noise, and contrast sensitivity of linear visual neurons. Visual Neuroscience 4, 147157.CrossRefGoogle ScholarPubMed
Watson, A.B. & Ahumada, A.J. Jr (1983). A look at motion in the frequency domain. In Motion: Perception and Representation, ed. Tsotsos, J.K., pp. 110. New York: Association for Computing Machinery.Google Scholar