Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T08:21:54.694Z Has data issue: false hasContentIssue false

Topography of the evoked potential to spatial localization cues

Published online by Cambridge University Press:  02 June 2009

Scott B. Steinman
Affiliation:
Smith-Kettlewell Eye Research Institute, San Francisco
Dennis M. Levi
Affiliation:
College of Optometry, University of Houston, Houston

Abstract

Visual tasks that are perceptually diverse might be expected to elicit unique evoked-potential waveforms that exhibit differing topographic maps. To investigate this possibility, multichannel visual-evoked potentials (VEPs) were recorded in response to several dot spatial localization stimuli that are physically similar yet produce different percepts (vernier offsets, stereoscopic disparity, bisection, orientation, and relative displacement) to determine if the unique percepts arising from these stimuli reflect the activation of different cortical neural populations. The resulting evoked potentials were all similar in waveform, although the stereoscopic VEPs were relatively delayed. Topographic maps of the evoked-potential activity to each stimulus revealed a late major component with two independent foci: one 7 or more centimeters above the inion lateral to the midline, and the other at least 6 cm lateral to Oz. The scalp localization of both peaks was independent of both the position of the stimulus in the visual field and the particular stimulus cue presented. An asymmetric response to pattern appearance vs. disappearance indicated strong pattern specificity for each stimulus type except unreferenced motion. The timing of the VEP responses and relative insensitivity to retinal locus of stimulation suggest the involvement of higher cortical areas. The two map foci might be interpreted as activation of inferotemporal and parietal cortices whose roles are thought to be visual object interpretation and spatial attention and localization, respectively.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, D.P. (1967a). Perception of contour orientation in the central fovea. 1. Short lines. Vision Research 7, 975997.CrossRefGoogle Scholar
Andrews, D.P. (1967b). Perception of contour orientation in the central fovea. 11. Spatial integration. Vision Research 7, 9991013.Google Scholar
Andrews, D.P. & Miller, D.T. (1978). Acuity for spatial separation as a function of stimulus size. Vision Research 18, 615619.Google Scholar
Berkley, M.A. & Spracue, J.M. (1979). Striate cortex and visual acuity functions in the cat. Journal of Comparative Neurology 187, 679702.CrossRefGoogle ScholarPubMed
Carlson, C.R. & Klopfenstein, R.W. (1985). Spatial-frequency model for hyperacuity. Journal of the Optical Society of America A2, 17471751.CrossRefGoogle Scholar
Dagnelie, G., de Vries, M.J., Maier, J. & Spekreijse, H. (1986). Pattern reversal stimuli: motion or contrast? Documenta Ophthalmologica 61, 343349.CrossRefGoogle ScholarPubMed
Darcey, T.M. (1979). Methods for localization of electrical sources in the human brain and applications to the visual system. Doctoral Thesis, California Institute of Technology.Google Scholar
Darcey, T.M., Ary, J.P. & Fender, D.H. (1980). Spatio-temporal visually evoked scalp potentials in response to partial-field patterned stimulation. Electroencephalography and Clinical Neurophysiology 50, 348355.Google Scholar
Desmedt, J.E., Nguyen, T.H. & Bourget, M. (1987). Bit-mapped color imaging of human evoked potentials with reference to the N20, P22 and N30 somatosensory responses. Electroencephalography and Clinical Neurophysiology 68, 119.CrossRefGoogle Scholar
Fox, P., Miezin, F. & Allman, J. (1987). Retinotopic organization of human visual cortex mapped with positron emission tomography. Journal of Neuroscience 7, 913922.CrossRefGoogle ScholarPubMed
Fukai, S. (1985). Topographic visually evoked potentials induced by stereoptic stimulus. British Journal of Ophthalmology 69, 612617.CrossRefGoogle ScholarPubMed
Geisler, W.S. (1984). Physical limits of acuity and hyperacuity. Journal of the Optical Society of America A1, 775782.Google Scholar
Hadani, I., Gur, M., Meiri, Z. & Fender, D.H. (1980). Hyperacuity in the detection of absolute and differential displacements of random dot patterns. Vision Research 20, 947951.Google Scholar
Hadani, I., Meiri, Z. & Gur, M. (1984). The effects of exposure duration and luminance on the three-dot hyperacuity task. Vision Research 24, 871874.CrossRefGoogle Scholar
Halliday, A.M., Barrett, G., Halliday, E. & Michael, W.F. (1977). The topography of the pattern evoked potential. In Visual Evoked Potentials in Man: New Developments, ed. Desmedt, J.E., pp. 121133. Oxford, England: Clarendon Press.Google Scholar
Herpers, M.J., Caberg, H.B. & Mol, J.M.F. (1981). Human cerebral potentials evoked by moving dynamic random dot stereograms. Electroencephalography and Clinical Neurophysiology 52, 5056.CrossRefGoogle ScholarPubMed
Jeffreys, D.A. (1971). Cortical source locations of pattern-related visual evoked potentials recorded from the human scalp. Nature (London) 229, 502504.Google Scholar
Jeffreys, D.A. (1977). The physiological significance of pattern visual evoked potentials. In Visual Evoked Potentials in Man: New Developments, ed. Desmedt, J.E., pp. 134167. Oxford, England: Clarendon Press.Google Scholar
Jeffreys, D.A. & Axford, J.G. (1972a). Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Experimental Brain Research 6, 121.Google Scholar
Jeffreys, D.A. & Axford, J.G. (1972b). Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin. Experimental Brain Research 16, 2240.Google Scholar
Kavanagh, R.M., Darcey, T.M. & Fender, D.H. (1976). The dimensionality of the human visual evoked scalp potential. Electroencephalography and Clinical Neurophysiology 40, 633644.Google Scholar
Klein, S.A. & Levi, D.M. (1985). Hyperacuity thresholds of one second: theoretical predictions and empirical validation. Journal of the Optical Society of America A2, 11701190.CrossRefGoogle Scholar
Lehmann, D., Darcey, T.M. & Skrandies, W. (1982). Intracerebral and scalp fields evoked by hemiretinal checkerboard reversal, and modeling of their dipole generators. In Clinical Applications of Evoked Potentials in Neurology, ed. Courjon, J., Mauguiere, F. & Revol, M., pp. 4148. New York: Raven Press.Google Scholar
Lehmann, D. & Skrandies, W. (1979). Multichannel evoked potential fields show different properties of human upper and lower hemiretina systems. Experimental Brain Research 35, 151159.CrossRefGoogle ScholarPubMed
Lehmann, D. & Skrandies, W. (1980). Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalography and Clinical Neurophysiology 48, 609621.CrossRefGoogle ScholarPubMed
Lehmann, D., Skrandies, W. & Lindenmaier, C. (1978). Sustained cortical potentials evoked in humans by binocularly correlated, uncorrelated and disparate dynamic random-dot stimuli. Neuroscience Letters 10, 129134.CrossRefGoogle ScholarPubMed
Levi, D.M. & Klein, S.A. (1985). Vernier acuity, crowding and amblyopia. Vision Research 25, 979991.Google Scholar
Levi, D.M. & Klein, S.A. (1986). Sampling in spatial vision. Nature 320, 360362.Google Scholar
Levi, D.M., Klein, S.A. & Aitsebaomo, P. (1984). Detection and discrimination of the direction of motion in central and peripheral vision of normal and amblyopic observers. Vision Research 24, 789800.CrossRefGoogle ScholarPubMed
Levi, D.M., Klein, S.A. & Aitsebaomo, P. (1985). Vernier acuity, crowding and cortical magnification. Vision Research 25, 963977.CrossRefGoogle ScholarPubMed
Levi, D.M., Klein, S.A. & Yap, Y.L. (1987). Positional uncertainty in peripheral and amblyopic vision. Vision Research 27, 581597.CrossRefGoogle ScholarPubMed
Levi, D.M., Manny, R.E., Klein, S.A. & Steinman S.B. (1983a). Electrophysiological correlates of hyperacuity in the human visual cortex. Investigative Ophthalmology and Visual Science (Suppl.) 24, 92.Google Scholar
Levi, D.M., Manny, R.E., Klein, S.A. & Steinman, S.B. (1983b). Electrophysiological correlates of hyperacuity in the human visual cortex. Nature (London) 306, 468470.Google Scholar
McKay, D.M. (1983). On-line source-density computation with a minimum of electrodes. Electroencephalography and Clinical Neurophysiology 56, 696698.CrossRefGoogle Scholar
Madden, B.C. (1985). A theory of spatial vision. Doctoral Dissertation, University of Rochester.Google Scholar
Maier, J., Dagnelie, G., Spekreijse, H. & van Dijk, B.W. (1987). Principal components analysis for source localization of VEPs in man. Vision Research 27, 165177.Google Scholar
Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: W.H. Freeman.Google Scholar
Mishkin, M., Ungerleider, L.G. & Macro, K.A. (1983). Object vision and spatial vision: two cortical pathways. Trends in Neuroscienced, 414417.CrossRefGoogle Scholar
Mitchison, G.J. & McKee, S.P. (1985). Interpolation in stereoscopic matching. Nature 315, 402404.CrossRefGoogle ScholarPubMed
Moran, J. & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science 229, 782784.CrossRefGoogle ScholarPubMed
Nakayama, K. & Tyler, C.W. (1981). Psychophysical isolation of movement sensitivity by removal of familiar position cues. Vision Research 21, 427433.Google Scholar
Neill, R.A., Fenelon, B., Manning, M.L. & Frost, B.G. (1986). Evoked potentials to dynamic random-dot stimuli with varying dot density ratios of disparity to background. Documenta Ophthalmologica 63, 407415.Google Scholar
Norcia, A.M., Manny, R.E. & Wesemann, W. (1988). Vernier acuity measured using the sweep VEP. Noninvasive Assessment of the Visual System (Optical Society of America Technical Digest Series) 3, ThA4/l-ThA4/4.Google Scholar
Parker, A. & Hawken, M. (1985). Capabilities of monkey cortical cells in spatial-resolution tasks. Journal of the Optical Society of America A2, 11011114.Google Scholar
Ritter, W., Ford, J.M., Gaillard, A.W.K., Harter, M.R., Kutas, M., Naatanen, R., Pouch, J., Renault, B. & Rohrbaugh, J. (1984). Cognition and event-related potentials. I. The relation of negative potentials and cognitive processes. Annals of the New York Academy of Sciences 425, 2438.Google Scholar
Ryan-Jones, D.L. & Berkley, M.A. (1987). The importance of contour discontinuity in visual hyperacuity. Investigative Ophthalmology and Visual Science (Suppl.) 28, 127.Google Scholar
Sagi, D. & Julesz, B. (1986). Enhanced detection in the aperture of focal attention during simple discrimination tasks. Nature 321, 693695.CrossRefGoogle ScholarPubMed
Skrandies, W. & Vomberg, H.E. (1985). Stereoscopic stimuli activate different cortical neurones in man: electrophysiological evidence. International Journal of Psychophysiology 2, 293296.Google Scholar
Spekreijse, H., Dagnelie, G., Maier, J. & Regan, D. (1985). Flicker and movement constituents of the pattern reversal response. Vision Research 25, 12971304.Google Scholar
Spitzer, H., Desimone, R. & Moran, J. (1988). Increased attention enhances both behavior and neural performance. Science 240, 338340.Google Scholar
Srebro, R. (1985a). Localization of visually evoked cortical activity in humans. Journal of Physiology 360, 233246.Google Scholar
Srebro, R. (1985b). Localization of cortical activity associated with visual recognition in humans. Journal of Physiology 360, 247259.Google Scholar
Srebro, R. (1987). The topography of scalp potentials evoked by pattern pulse stimuli. Vision Research 27, 901914.Google Scholar
Srebro, R. & Osetinsky, M.V. (1987). The localization of cortical activity evoked by vernier offset. Vision Research 27, 13871390.CrossRefGoogle ScholarPubMed
Steinman, S.B., Levi, D.M. & McKee, S.P. (1988). Discrimination of time and velocity in the amblyopic visual system Clinical Vision Sciences 2, 265276.Google Scholar
Steinman, S.B., Levi, D.M., Klein, S.A. & Manny, R.E. (1984). Spatial interference with cortical potentials evoked by vernier offsets. Investigative Ophthalmology and Visual Science (Suppl.) 25, 144.Google Scholar
Steinman, S.B., Levi, D.M., Klein, S.A. & Manny, R.E. (1985). Selectivity of the evoked potential for vernier offset. Vision Research 25, 951961.Google Scholar
Stratton, G.M. (1898). A mirror pseudoscope and the limit of visible depth. Psychology Review 9, 433.Google Scholar
Sutter, E.E. (1988). Field topography of the visual evoked response. Investigative Ophthalmology and Visual Science (Suppl.) 29, 433.Google Scholar
Swindale, N.V. & Cynader, M.S. (1986). Vernier acuity of neurones in cat visual cortex. Nature (London) 319, 591593.Google Scholar
Thickbroom, G.W., Mastaglia, F.L., Carroll, W.M. & Davies, H.D. (1984). Source derivation: applications to topographic mapping of visual evoked potentials. Electroencephalography and Clinical Neurophysiology 59, 279285.Google Scholar
Ungerleider, L.G. & Mishkin, M. (1982). Two cortical visual systems. In Analysis of Visual Behavior, ed. Ingle, D.J., Goodale, M.A. & Mansfield, R.J.W., pp. 549586. Cambridge: MIT Press.Google Scholar
van Essen, D.C. & Maunsell, J.H.R. (1983). Hierarchical organization and functional streams in the visual cortex. Trends in Neuroscience 63, 16.Google Scholar
Watt, R.J. (1984). Towards a general theory of the visual acuities for shape and spatial arrangement. Vision Research 24, 13771386.CrossRefGoogle ScholarPubMed
Watt, R.J. (1988). Visual Processing: Computational, Psychophysical and Cognitive Research, pp. 2742. Hillsdale, NJ: Erlbaum.Google Scholar
Westheimer, G. (1975). Visual acuity and hyperacuity. Investigative Ophthalmology and Visual Science 14, 570572.Google Scholar
Weymouth, F., Andersen, E. & Averill, H.L. (1923). Retinal mean local sign: a new view of the relation of the retinal mosaic to visual perception. American Journal of Physiology 63, 410411.Google Scholar
Wilson, H.R. (1986). Responses of spatial mechanisms can explain hyperacuity. Vision Research 26, 453469.Google Scholar
Wülfing, E. (1892). Uber den kleinsten gesichtswinkel. Z. Biol. 29, 199202.Google Scholar
Zak, R. & Berkley, M.A. (1986). Evoked potentials elicited by vernier offset targets: estimating vernier thresholds, and the properties of the neural substrate. Vision Research 26, 439451.Google Scholar
Zeki, S.M. (1978). Functional specialization in the visual cortex of the rhesus monkey. Nature 274, 423428.Google Scholar