Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T00:45:14.201Z Has data issue: false hasContentIssue false

Somatostatin-like immunoreactivity in the pigeon visual system: Developmental expression and effects of retina removal

Published online by Cambridge University Press:  02 June 2009

Gigliola Fontanesi
Affiliation:
Department of Physiology and Biochemistry, University of Pisa, Italy
Giovanna Traina
Affiliation:
Department of Environmental Sciences, University of Tuscia, Viterbo, Italy
Paola Bagnoli
Affiliation:
Department of Environmental Sciences, University of Tuscia, Viterbo, Italy

Abstract

The distribution of somatostatin (SS)-containing neurons was investigated by immunocytochemical methods in the central visual system of adult, developing, and retina-ablated pigeons. In normal adult brains, SS-positive cells and processes were present in the optic tectum, the nucleus of the basal optic root, the visual Wulst, and the ectostriatum. During development, progressive increase or decrease in the numerical density and the total number of SS-containing neurons occurred as determined by quantitative analysis. Changes in SS immunoreactivity also occurred as a consequence of unilateral and bilateral retina removal immediately after hatching, i.e. before retinofugal connections have been established. In spite of the segregation of visual inputs due to the almost completely crossed retinal projections, unilateral and bilateral deafferentation differentially affected SS-containing visual regions. In addition, different effects were observed on the relative packing density of labeled cells as compared to their total number. A possible role of retinal axons in regulating the distribution of SS immunoreactivity was suggested by its altered expression induced by retinal deafferentation. In addition, parallels with the distribution of SS immunoreactivity in the pigeon’s visual system were used to suggest possible equivalence between cell populations in the avian and the mammalian brains.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adret, P. & Rogers, L.J. (1989). Sex difference in the visual projections of young chicks: A quantitative study of the thalamofugal pathway. Brain Research 478, 5973CrossRefGoogle ScholarPubMed
Anderson, K.D. & Reiner, A. (1990). Distribution and relative abundance of neurons in the pigeon forebrain containing somatostatin, neuropeptide Y or both. Journal of Comparative Neurology 299, 261282Google Scholar
Bagnoli, P., Casini, G., Fontanesi, G. & Sebastiani, L. (1989 a). Reorganization of visual pathways following posthatching removal of one retina in pigeons. Journal of Comparative Neurology 288, 512527CrossRefGoogle ScholarPubMed
Bagnoli, P., Gregorio, S.Di, Molnar, M., Romei, C. & Fontanesi, G. (1991). Maturation and plasticity of neuropeptides in the visual system. In The Changing Visual System, ed. Bagnoli, P. & Hodos, W., pp. 185197. New York: Plenum Press.Google Scholar
Bagnoli, P., Fontanesi, G., Alesci, R. & Erichsen, J.T. (1992). Distribution of neuropeptide Y, substance P, and choline acetyltransferase in the developing visual system of the pigeon and effects of unilateral retina removal. Journal of Comparative Neurology 318, 392414CrossRefGoogle ScholarPubMed
Bagnoli, P., Fontanesi, G., Streit, P., Domenici, L. & Alesci, R. (1989 b). Changing distribution of GABA-like immunoreactivity in pigeon visual areas during the early posthatching period and effects of retina removal on tectal GABAergic system. Visual Neuroscience 3, 491508CrossRefGoogle Scholar
Bagnoli, P., Porciatti, V., Fontanesi, G. & Sebastiani, L. (1987). Morphological and functional changes in the retinotectal system of the pigeon during the early posthatching period. Journal of Comparative Neurology 256, 400411Google Scholar
Bagnoli, P., Porciatti, V., Lanfranchi, A. & Bedini, C. (1985). Developing pigeon retina. Light evoked responses and ultrastructure of outer segments and synapses. Journal of Comparative Neurology 235, 384394CrossRefGoogle ScholarPubMed
Bear, M.F. & Ebner, F.F. (1983). Somatostatin-like immunoreactivity in the forebrain of Pseudemys turtles. Neuroscience 9, 297307Google Scholar
Bendotti, C., Hohmann, C., Forloni, G., Reeves, R., Coyle, J.T. & Ostergranite, M.L. (1990). Developmental expression of somatostatin in mouse brain. II. In situ hybridization. Developmental Brain Research 53, 2639CrossRefGoogle ScholarPubMed
Benowitz, L.I. & Karten, H.J. (1976). Organization of the tectofugal visual pathway in the pigeon: A retrograde transport study. Journal of Comparative Neurology 167, 503520CrossRefGoogle Scholar
Bodenant, C., Leroux, P., Gonzales, B.J. & Vaudry, H. (1991). Transient expression of somatostatin receptors in the rat visual system during development. Neuroscience 41, 595606CrossRefGoogle ScholarPubMed
Boxer, M.I. & Stanford, D. (1985). Projections to the posterior visual hyperstriatal region in the chick: An HRP study. Experimental Brain Research 57, 494498CrossRefGoogle Scholar
Brecha, N., Casini, G. & Rickmann, D. (1991). Organization and development of sparsely distributed wide-field amacrine cells in the rabbit retina. In Changing Visual System, ed. Bagnoli, P. & Hodos, W., pp. 95117. New York: Plenum Press.CrossRefGoogle Scholar
Brecha, N., Johnson, D., Bolz, J., Sharma, S., Paknavelas, J.G. & Liebermann, A.R. (1987). Substance P-immunoreactive retinal ganglion cells and their central axon terminals in the rabbit. Nature 327, 155158CrossRefGoogle ScholarPubMed
Brecha, N., Karten, H.J. & Hunt, S.P. (1980). Projections of the nucleus of the basal optic root in the pigeon: An Autoradiographic and horseradish peroxidase study. Journal of Comparative Neurology 189, 615670CrossRefGoogle ScholarPubMed
Brecha, N., Karten, H.J. & Schenker, C. (1981). Neurotensin-like and somatostatin-like immunoreactivity within amacrine cells of the retina. Neuroscience 6, 13291340CrossRefGoogle ScholarPubMed
Britto, L.R.G., Keyser, K.T., Hamassaki, D.E. & Karten, H.J. (1988). Catecholaminergic subpopulation of retinal displaced ganglion cells projects to the accessory optic nucleus in the pigeon (Columba livia). Journal of Comparative Neurology 269, 109117CrossRefGoogle Scholar
Buchan, A.M.J., Sikora, L.K.J., Levy, J.G., McIntosh, C.H.S., Dyck, I. & Brown, J.C. (1985). An immunocytochemical investigation with monoclonal antibodies to somatostatin. Histochemistry 83, 175183CrossRefGoogle ScholarPubMed
Cavanagh, M.E. & Parnavelas, J.G. (1988). Development of somatostatin immunoreactive neurons in the rat occipital cortex: A combined immunocytochemical-autoradiographic study. Journal of Comparative Neurology 268, 112CrossRefGoogle ScholarPubMed
Chun, J.J., Nakamura, M.J. & Shatz, C.J. (1987). Transient cells of the developing mammalian telencephalon are peptide immunoreactive neurons. Nature 325, 617620CrossRefGoogle ScholarPubMed
Davila, J.C., De la Calle, A., Gutierrez, A., Megias, M., Andru, M.J. & Guirado, S. (1991). Distribution of neuropeptide Y (NPY) in the cerebral cortex of the lizards Psammodromus algirus and Podarcis hispanica: Co-localization of NPY, somatostatin and GABA. Journal of Comparative Neurology 308, 397408Google Scholar
Davila, J.C., Guirado, S. & De la Calle, A. (1988). Immunocytochemical localization of somatostatin in the cerebral cortex of lizards. Brain Research 447, 5259Google Scholar
Du, F. & Dubois, P. (1988). Distribution of substance P and vasoactive intestinal polypeptide neurons in the chicken spinal cord, with notes on their postnatal development. Journal of Comparative Neurology 278, 253264CrossRefGoogle ScholarPubMed
Ehrlich, D., Keyser, K.T. & Karten, H.J. (1987). Distribution of substance P-like immunoreactive retinal ganglion cells and their pattern of termination in the optic tectum of chick Callus gallus. Journal of Comparative Neurology 266, 220233CrossRefGoogle Scholar
Ehrlich, D. & Mark, R. (1984). Topography of primary visual centres in the brain of the chick Gallus gallus. Journal of Comparative Neurology 223, 611625CrossRefGoogle ScholarPubMed
Epelbaum, J. (1986). Somatostatin in the central nervous system: Physiology and pathological modification. Progress in Neurobiology 27, 63100CrossRefGoogle Scholar
Ferriero, D.M., Head, V.A., Edwards, R.H. & Sagar, S.M. (1990). Somatostatin mRNA and molecular forms during development of the rat retina. Developmental Brain Research 57, 1519CrossRefGoogle ScholarPubMed
Ferriero, D.M. & Sagar, S.M. (1987). Development of somatostatin immunoreactive neurons in rat retina. Developmental Brain Research 34, 207214Google Scholar
Fite, K.V., Brecha, N., Karten, H.J. & Hunt, S.P. (1981). Displaced ganglion cells and the accessory optic system of pigeon. Journal of Comparative Neurology 195, 279289Google Scholar
Forloni, G., Hohmann, C. & Coyle, J.T. (1990). Developmental expression of somatostatin in mouse brain. I. Immunocytochemical studies. Developmental Brain Research 53, 625CrossRefGoogle Scholar
Gamlin, P.D.R. & Cohen, D.H. (1986). A second ascending visual pathway from the optic tectum to the telencephalon in the pigeon Columba livia. Journal of Comparative Neurology 250, 296310CrossRefGoogle Scholar
Gamlin, P.D.R. & Cohen, D.H. (1988 a). Retinal projections to the pre-tectum in the pigeon Columba livia. Journal of Comparative Neurology 269, 117CrossRefGoogle Scholar
Gamlin, P.D.R. & Cohen, D.H. (1988 b). Projections of the retinore-cipient pretectal nuclei of the pigeon Columba livia. Journal of Comparative Neurology 269, 1846Google Scholar
Grimm-Jorgenson, Y. (1987). Somatostatin and calcitonin stimulate neurite regeneration of molluscan neurons in vitro. Brain Research 403, 121126CrossRefGoogle Scholar
Gulloff, C.D., Maturana, H.R. & Varela, F.J. (1987). Cytoarchi-tecture of the avian ventral lateral geniculate nucleus. Journal of Comparative Neurology 264, 509526CrossRefGoogle Scholar
Hancock, M.B. (1984). Visualization of peptide-immunoreactive processes of serotonin immunoreactive cells using two color immuno-peroxidase staining. Journal of Histochemistry and Cytochemistry 37, 311314CrossRefGoogle Scholar
Hayashi, M. (1992). Ontogeny of some neuropeptides in the primate brain. Progress in Neurobiology 38, 231260CrossRefGoogle ScholarPubMed
Hayes, B.P. & Webster, K.E. (1981). Neurones situated outside the isthmo-optic nucleus and projecting to the eye in adult birds. Neuroscience Letters 26, 107112CrossRefGoogle Scholar
Hendry, S.H.C., Jones, E.G., De Felipe, J., Schmechel, D., Brandon, C. & Emson, P.C. (1984). Neuropeptide-containing neurons of the cerebral cortex are also GABAergic. Proceedings of the National Academy of Sciences of the U.S.A. 81, 526530CrossRefGoogle ScholarPubMed
Henke, H. (1982). The central part of the avian visual system. Ph.D. Dissertation, Brain Research Institute, University of Zurich, Switzerland.Google Scholar
Hokfelt, T. (1991). Neuropeptides in perspective: The last ten years. Neuron 7, 867879CrossRefGoogle ScholarPubMed
Huntley, G.W., Hendry, S.H.C., Killacrey, H.P., Chalupa, L.M. & Jones, E.G. (1988). Temporal sequence of neurotransmitter expression by developing neurons of fetal monkey visual cortex. Developmental Brain Research 43, 6996CrossRefGoogle Scholar
Jacquin, T., Champagnat, J., Devavit-Saubic, M. & Siggins, G.R.(1988). Somatostatin depresses excitability in neurons of the solitary tract complex through hyperpolarization and augmentation of Im, and non-activating voltage-dependent outward current blocked by muscarinic agonists. Proceedings of the National Academy of Sciences of the U.S.A. 85, 948952CrossRefGoogle Scholar
Jeffery, G. & Parnavelas, J.G. (1987). Early visual deafferentation of the cortex results in an asymmetry of somatostatin labeled cells. Experimental Brain Research 67, 651655CrossRefGoogle Scholar
Johansson, O., Hokfelt, T. & Elde, R.P. (1984). Immunohistochem-ical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat. Neuroscience 13, 265339Google Scholar
Jones, E.G. & Hendry, S.H.C. (1986). Co-localization of GABA and neuropeptides in neocortical neurons. Trends in Neuroscience 9, 7176Google Scholar
Karten, H.J. & Hodos, W. (1967). A Sterotaxic Atlas of the Brain of the Pigeon Columba livia. Baltimore, Maryland: The Johns Hopkins Press.Google Scholar
Karten, H.J. & Shimizu, T. (1991). Are visual hierarchies in the brains of the beholders? Constancy and variability in the visual system of birds and mammals. In The Changing Visual System, ed. Bagnoli, P. & Hodos, W., pp. 5159. New York: Plenum Press.CrossRefGoogle Scholar
Laemle, L.K. & Feldmann, S.C. (1985). Somatostatin (Srif)-like immunoreactivity in the central visual centers of the rat. Journal of Comparative Neurology 233, 452462CrossRefGoogle ScholarPubMed
Laquerriere, A., Leroux, P., Gonzales, B.J., Benant, C., Benoit, R. & Vaudry, H. (1989). Distribution of somatostatin receptors in the brain of the frog Rana ridibunda: Correlation with the localization of somatostatin containing neurons. Journal of Comparative Neurology 280, 451467Google Scholar
Larsen, J.N.B., Bersani, M., Olcese, J., Holst, J.J. & Moller, M. (1990). Somatostatin and prosomatostatin in the retina of the rat: An immunohistochemical, in-situ hybridization and chromato-graphic study. Visual Neuroscience 5, 441452Google Scholar
Marshak, D.W. (1992). Peptidergic neurons of teleost retinas. Visual Neuroscience 8, 137141CrossRefGoogle ScholarPubMed
Martin, J.L., Chesselet, M.F., Raynar, K., Gonzales, C. & Reislne, T. (1991). Differential distribution of somatostatin receptor subtypes in rat brain revealed by newly developed somatostatin analogs. Neuroscience 41, 581593CrossRefGoogle ScholarPubMed
McKenna, O.C. & Wallman, J. (1985). Functional postnatal changes in avian brain regions responsive to retinal slip: A 2-deoxy-d-glu-cose study. Journal of Neuroscience 6, 330342CrossRefGoogle Scholar
Miguel-Hidalgo, J.J., Semba, E., Takatsuji, K. & Tohyama, H.F. (1990). Substance P and enkephalins in the superficial layers of the rat superior colliculus: Differential plastic effects of retinal deafferentation. Journal of Comparative Neurology 299, 389404Google Scholar
Mitrofanis, J., Robinson, S.R. & Provis, J.M. (1989). Somatostatinergic neurones of the developing human and cat retina. Neuroscience Letters 104, 209216CrossRefGoogle Scholar
Nakazawa, M., Koh, T., Kani, K. & Maeda, T. (1992). Transient patterns of serotonergic innervation in the rat visual cortex: Normal development and effects of neonatal enucleation. Developmental Brain Research 66, 7790Google Scholar
Naus, C.C.G., Miller, F.D., Morrison, J.H. & Bloom, F.E. (1988). Immunohistochemical and in-situ hybridization analysis of the development of the rat somatostatin-containing neuronal system. Journal of Comparative Neurology 269, 448462CrossRefGoogle ScholarPubMed
Pincus, D.W., Cicco-Bloom, E.M.Di & Black, I.B. (1990). Vasoac-tive intestinal peptide regulates mitosis differentiation and survival of cultured sympathetic neuroblasts. Nature 343, 564566Google Scholar
Porciatti, V., Bagnoli, P., Lanfranchi, A. & Bedini, C. (1985). Interaction between photoreceptors and pigment epithelium in developing pigeon retina: An electrophysiological and ultrastructural study. Documenta Ophthalmologica 60, 413419CrossRefGoogle ScholarPubMed
Cajal, S.Ramon y (1891). Sur la fine structure du lobe optique des oiseaux et sur l’origine reelle des nerfs optiques. International Archive of Anatomy and Physiology 8, 337366Google Scholar
Reiner, A. & Northcutt, R.G. (1987). An immunohistochemical study of the telencephalon of the African lungfish Protopterus annectens. Journal of Comparative Neurology 256, 463481CrossRefGoogle ScholarPubMed
Rhoades, R.W., Mooney, R.D., Chiaia, N.L. & Bennet-Clarke, C.A. (1990). Development and plasticity of the serotonergic projection to the Hamster’s superior colliculus. Journal of Comparative Neurology 299, 151166CrossRefGoogle Scholar
Rio, J.P., Villalobos, J., Miceli, D. & Reperant, J. (1983). Efferent projections of the visual Wulst upon the nucleus of the basal optic root in the pigeon. Brain Research 271, 145151Google Scholar
Rogers, L.J. & Bell, G.A. (1989). Different rates of functional development in the two visual systems of the chicken revealed by [14C]2-deoxyglucose. Developmental Brain Research 49, 161172CrossRefGoogle ScholarPubMed
Rogers, L.J. & Sink, H.S. (1988). Transient asymmetry in the projections of the rostral thalamus to the visual hyperstriatum of the chicken and reversal of its direction by light exposure. Experimental Brain Research 70, 378384CrossRefGoogle Scholar
Rosier, A.M., Leroux, P., Vaudry, H., Orban, G.A. & Vandesande, F. (1991). Distribution of somatostatin receptors in the cat and monkey visual cortex demonstrated by in vitro receptor autoradiogra-phy. Journal of Comparative Neurology 310, 189199CrossRefGoogle Scholar
Sas, E. & Maler, L. (1991). Somatostatin-like immunoreactivity in the brain of an electric fish (Apteronotus leptorhynchus) identified with monoclonal antibodies. Journal of Chemical Neuroanatomy 4, 155186Google Scholar
Shimizu, T., Britto, L.R.G., Karten, H.J. & Cox, K. (1991). Cholera toxin mapping of retinal projections in birds. Society for Neu-roscience Abstracts 17, 257.Google Scholar
Shimizu, T. & Karten, H.J. (1990). Immunohistochemical analysis of the visual Wulst of the pigeon Columba livia. Journal of Comparative Neurology 300, 346369CrossRefGoogle ScholarPubMed
Somogyi, P., Hodgson, A.J., Smith, A.D., Nunzi, M.G., Gorio, A. & Wu, J.Y. (1984). Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin or cholecystokinin-immunoreactive material. Journal of Neuroscience 4, 25902603Google Scholar
Straznicky, C. & Hiscock, J. (1989). Neuropeptide Y-like immunoreactivity in neurons of the human retina. Vision Research 29, 10411048Google Scholar
Vincent, S.R., McIntosh, C.H.S., Buchan, A.M.J. & Brown, J.C. (1985). Central somatostatin system revealed with monoclonal antibodies. Journal of Comparative Neurology 238, 169186CrossRefGoogle ScholarPubMed
Wang, H.L., Reisine, K. & Dichter, M. (1990). Somatostatin-14 and somatostatin-28 inhibit calcium currents in rat cortical neurons. Neuroscience 38, 335342CrossRefGoogle Scholar
White, C.A., Chalupa, L.M., Johnson, D. & Brecha, N. (1990). So-matostatin-immunoreactive cells in the adult cat retina. Journal of Comparative Neurology 293, 134150CrossRefGoogle ScholarPubMed
White, C.A. & Chalupa, L.M. (1991). Subgroup of alpha ganglion cells in the adult cat retina is immunoreactive for somatostatin. Journal of Comparative Neurology 304, 113Google Scholar
Zalutsky, A. & Miller, R.F. (1990). The physiology of somatostatin in the rabbit retina. Journal of Neuroscience 10, 383393Google Scholar