Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T22:58:25.208Z Has data issue: false hasContentIssue false

A sequence upstream of the mouse blue visual pigment gene directs blue cone-specific transgene expression in mouse retinas

Published online by Cambridge University Press:  02 June 2009

M. Isabel Chiu
Affiliation:
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore
Jeremy Nathans
Affiliation:
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore Departments of Neuroscience and Ophthalmology, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore

Abstract

A 6.4–kb sequence upstream of the mouse blue visual pigment gene has been assayed in transgenic mice for the ability to direct cell-type-specific expression of a linked β-galactosidase (lacZ) reporter. The construct is expressed specifically in cone photoreceptors in three independent lines. Transgene expression is found in the developing retina on the first postnatal day, increases rapidly in subsequent days, and persists through adulthood. A gradient of transgene expression is observed across the retina, with the transgene-expressing cones found almost exclusively in the lower retina and rarely in the upper retina, a pattern that parallels the distribution of blue cones in the mouse retina. Double-labeling with anti-cone pigment antibodies shows that transgene expression is confined to blue cones. These results imply that all of the sequence elements necessary for the control of blue cone-specific expression are encoded within the 6.4–kb DNA fragment tested.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carter-Dawson, L. & la Vail, M.M. (1979). Rods and cones in the mouse retina, II. Autoradiographic analysis of cell generation using tritiated thymidine. Journal of Comparative Neurology 188, 263272.CrossRefGoogle ScholarPubMed
Curcio, C.A., Sloan, K.R., Kalina, R.E. & Hendrickson, A.E. (1990). Human photoreceptor topography. Journal of Comparative Neurology 292, 497523.Google Scholar
Curcio, C.A., Allan, K.A., Sloan, K.R., Lerea, C.L., Hurley, J.B., Klock, I.B. & Milam, A.H. (1991). Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. Journal of Comparative Neurology 312, 610624.CrossRefGoogle ScholarPubMed
de Monasterio, F.M., McCrane, E.P., Newlander, J.K. & Schein, S.J. (1985). Density profile of blue-sensitive cones along the horizontal meridian of macaque retina. Investigative Ophthalmology and Visual Science 26, 289302.Google ScholarPubMed
Engstrom, K. (1963). Cone types and cone arrangement in teleost retina. Acta Zoologica (Stockholm) 44, 179243.CrossRefGoogle Scholar
Frischauf, A.-M., Lehrach, H., Poustka, A. & Murray, N. (1983). Lambda replacement vectors carrying polylinker sequences. Journal of Molecular Biology 170, 827842.CrossRefGoogle ScholarPubMed
Hogan, B., Constanttni, F. & Lacy, E. (1986). Manipulating the Mouse Genome. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Jacobs, G.H., Neitz, J. & Deegan, J.F. (1991). Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353, 655656.Google Scholar
Lem, J., Applebury, M.L., Falk, J.D., Flannery, J.G. & Simon, M.I. (1991). Tissue-specific and developmental regulation of rod opsin chimeric genes in transgenic mice. Neuron 6, 201210.CrossRefGoogle ScholarPubMed
Marc, R.E. & Sperling, H.G. (1977). Chromatic organization of primate cones. Science 196, 454456.Google Scholar
McCaffery, P., Tempst, P., Lara, G. & Drager, U.C. (1991). Aldehyde dehydrogenase is a positional marker in the retina. Development 112, 693702.CrossRefGoogle ScholarPubMed
McLoon, S.C. (1991). A monoclonal antibody that distinguishes between temporal and nasal retinal axons. Journal of Neuroscience 11, 14701477.CrossRefGoogle ScholarPubMed
Nathans, J., Thomas, D. & Hogness, D. (1986). Molecular genetics of human color vision: The genes encoding blue, green, and red pigments. Science 232, 193202.CrossRefGoogle ScholarPubMed
Peschon, J.J., Behringer, R.R., Brinster, R.L. & Palmiter, R.D. (1987). Spermatid-specific expression of protamine 1 in transgenic mice. Proceedings of the National Academy of Sciences of the U.S.A. 84, 53165319.CrossRefGoogle ScholarPubMed
Szèl, A., Rohlich, P., Caffe, A.R., Juliusson, B., Aguirre, G. & van Veen, T. (1992). Unique topographic separation of two spectral classes of cones in the mouse retina. Journal of Comparative Neurology 325, 327342.Google Scholar
Szèl, A., Rohlich, P., Mieziewska, K., Aguirre, G. & van Veen, T. (1993). Spatial and temporal differences between the expression of short- and middle–wave sensitive cone pigments in the mouse retina: A developmental study. Journal of Comparative Neurology 331, 564577.Google Scholar
Trisler, D., Schneider, M.D. & Nirenberg, M. (1981). A topographic gradient of molecules in retina can be used to identify neuron position. Proceedings of the National Academy of Sciences of the U.S.A. 78, 21452149.Google Scholar
Wang, Y., Macke, J.P., Merbs, S.L., Zack, D.J., Klaunberg, B., Bennett, J., Gearhart, J. & Nathans, J. (1992). A locus control region adjacent to the human red and green visual pigment genes. Neuron 9, 429440.CrossRefGoogle Scholar
Young, R.W. (1985). Cell differentiation in the retina of the mouse. Anatomical Record 212, 199205.Google Scholar
Zack, D.J., Bennett, J., Wang, Y., Davenport, C, Klaunberg, B., Gearhart, J. & Nathans, J. (1991). Unusual topography of bovine rhodopsin promoter-lacZ fusion gene expression in transgenic mouse retinas. Neuron 6, 187199.Google Scholar