Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-27T20:50:49.988Z Has data issue: false hasContentIssue false

Rod and cone function in coneless mice

Published online by Cambridge University Press:  03 February 2006

GARY A. WILLIAMS
Affiliation:
Neuroscience Research Institute and Department of Psychology, University of California, Santa Barbara, California
KRISTIN A. DAIGLE
Affiliation:
Neuroscience Research Institute and Department of Psychology, University of California, Santa Barbara, California
GERALD H. JACOBS
Affiliation:
Neuroscience Research Institute and Department of Psychology, University of California, Santa Barbara, California

Abstract

Transgenic coneless mice were initially developed to study retinal function in the absence of cones. In coneless mice created by expressing an attenuated diphtheria toxin under the control of flanking sequences from the human L-cone opsin gene, a small number of cones (3–5% of the normal complement) survive in a retina that otherwise appears structurally quite normal. These cones predominantly (∼87% of the total) contain UV-sensitive photopigment. ERG recordings, photoreceptor labeling, and behavioral measurements were conducted on coneless and wild-type mice to better understand how the nature of this alteration in receptor complement impacts vision. Signals from the small residual population of UV cones are readily detected in the flicker ERG where they yield signal amplitudes at saturation that are roughly proportional to the number of surviving cones. Behavioral measurements show that rod-based vision in coneless mice does not differ significantly from that of wild-type mice, nor does their rod system show any evidence of age-related deterioration. Coneless mice are able to make accurate rod-based visual discriminations at light levels well in excess of those required to reach cone threshold in wild-type mice.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alpern, M., Lee, G.B., Maaseidvaag, F., & Miller, S.S. (1971). Colour vision in blue-cone monochromacy. Journal of Physiology 212, 211233.CrossRefGoogle Scholar
Anderson, K.V. & O'Steen, W.K. (1972). Black-white and pattern discriminations in rats without photoreceptors. Experimental Neurology 34, 446454.CrossRefGoogle Scholar
Applebury, M.L., Antoch, M.P., Baxter, L.C., Chun, L.L.Y., Falk, J.D., Farhangfar, F., Kage, K., Kryzystolik, M.L., Lyass, L.A., & Robbins, J.T. (2000). The murine cone photoreceptor: A single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27, 513523.CrossRefGoogle Scholar
Biel, M., Seeliger, M., Pfeifer, A., Kohler, K., Gerstiner, A., Ludwig, A., Jaissle, G., Fauser, S., Zrenner, E., & Hofman, F. (1999). Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. Proceedings of the National Academy of Sciences of the U.S.A. 96, 75537557.CrossRefGoogle Scholar
Blanks, J. & Johnson, L.V. (1984). Specific binding of peanut lectin to a class of retinal photoreceptor cells: A species comparison. Investigative Ophthalmology and Visual Science 25, 546557.Google Scholar
Buck, S.L. (2004). Rod-cone interactions in human vision. In The Visual Neurosciences, Vol. 1, ed. Chalupa, L.M. & Werner, J.S., pp. 863878. Cambridge, Massachusetts: MIT Press.
Carter-Dawson, L.D., LaVail, M.M., & Sidman, R.L. (1978). Differential effects of the rd mutation on rods and cones in the mouse retina. Investigative Ophthalmology and Visual Science 17, 489498.Google Scholar
Chiu, M.I., Zack, D.J., Wang, Y., & Nathans, J. (1994). Murine and bovine blue cone pigment genes: Cloning and characterization of the S family of visual pigments. Genomics 21, 440443.CrossRefGoogle Scholar
Dang, L., Pulukuri, S., Mears, A.J., Swaroop, A., Reese, B.E., & Sitaramayya, A. (2004). Connexin 36 in photoreceptor cells: Studies on transgenic rod-less and cone-less mouse retinas. Molecular Vision 10, 323327.Google Scholar
Dryja, T.P. & Li, T. (1995). Molecular genetics of retinitis pigmentosa. Human Molecular Genetics 4, 17391743.CrossRefGoogle Scholar
Fulton, A.B. & Rushton, W.A.H. (1978). The human rod ERG: Correlation with psychophysical responses in light and dark adaptation. Vision Research 18, 793800.CrossRefGoogle Scholar
Geller, A.M. & Sieving, P.A. (1993). Assessment of foveal cone photoreceptors in Stargardt's macular dystrophy using a small dot detection task. Vision Research 33, 15091524.CrossRefGoogle Scholar
Glosmann, M. & Ahnelt, P.K. (1998). Coexpression of M- and S-opsin extends over the entire inferior mouse retina. Investigative Ophthalmology and Visual Science 39, S1059.Google Scholar
Govardovskii, V.I., Fyhrquist, N., Reuter, T., Kuzmin, D.G., & Donner, K. (2000). In search of the visual pigment template. Visual Neuroscience 17, 509528.CrossRefGoogle Scholar
Herreros de Tejada, P., Munoz Tedo, C., & Costi, C. (1997). Behavioral estimates of absolute visual threshold in mice. Vision Research 37, 24272432.CrossRefGoogle Scholar
Hess, R.F., Nordby, K., & Pointer, J.S. (1987). Regional variation of contrast sensitivity across the retina of the achromat: Sensitivity of human rod vision. Journal of Physiology 388, 101119.CrossRefGoogle Scholar
Jacobs, G.H. (1993). The distribution and nature of colour vision among the mammals. Biological Reviews 68, 413471.CrossRefGoogle Scholar
Jacobs, G.H., Fenwick, J.C., Calderone, J.B., & Deeb, S.S. (1999). Human cone pigment expressed in transgenic mice yields altered vision. Journal of Neuroscience 19, 32583265.Google Scholar
Jacobs, G.H., Neitz, J., & Deegan, II, J.F. (1991). Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353, 655656.CrossRefGoogle Scholar
Jacobs, G.H., Neitz, J., & Krogh, K. (1996). Electroretinogram flicker photometry and its applications. Journal of the Optical Society of America A 13, 641648.CrossRefGoogle Scholar
Jacobs, G.H., Williams, G.A., & Fenwick, J.A. (2004). Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse. Vision Research 44, 16151622.CrossRefGoogle Scholar
Jeon, C.-J., Strettoi, E., & Masland, R.H. (1998). The major cell populations of the mouse retina. Journal of Neuroscience 18, 89368946.Google Scholar
Jimenez, A.J., Garcia-Fernandez, J.-M., Gonzalez, B., & Foster, R.G. (1996). The spatio-temporal pattern of photoreceptor degeneration in the aged rd/rd mouse retina. Cell and Tissue Research 284, 193202.Google Scholar
Lucas, R.J., Freedman, M.S., Munoz, M., Garcia-Fernandez, J.-M., & Foster, R.G. (1999). Regulation of the mammalian pineal by non-rod, non-cone ocular photoreceptors. Science 284, 505507.CrossRefGoogle Scholar
Lyubarsky, A.L., Daniele, L.L., & Pugh, E.N.J. (2004). From candelas to photoisomerizations in the mouse eye by rhodopsin bleaching in situ and the light-rearing dependence of the major components of the mouse ERG. Vision Research 44, 32353251.CrossRefGoogle Scholar
Lyubarsky, A.L., Falsini, B., Pennesi, M.E., Valentini, P., & Pugh, Jr., E.N. (1999). UV- and midwave-sensitive cone-driven retinal responses of the mouse: A phenotype for coexpression of cone photopigments. Journal of Neuroscience 19, 442455.Google Scholar
Makous, W. (2004). Scotopic vision. In The Visual Neurosciences, Vol. 1, ed. Chalupa, L.M. & Werner, J.S., pp. 838850. Cambridge, Massachusetts: MIT Press.
Murray, I.J., Parry, N.R.A., Kremers, J., Stepien, M., & Schild, A. (2004). Photoreceptor topography and cone-specific electroretinograms. Visual Neuroscience 21, 231235.CrossRefGoogle Scholar
Pennesi, M.E., Lyubarsky, A.L., & Pugh, E.N.J. (1998). Extreme responsiveness of the pupil of the dark-adapted mouse to steady retinal illumination. Investigative Ophthalmology and Visual Science 39, 21482156.Google Scholar
Raven, M.A. & Reese, B.E. (2003). Mosaic regularity of horizontal cells in the mouse retina is independent of cone photoreceptor input. Investigative Ophthalmology and Visual Science 44, 965973.CrossRefGoogle Scholar
Reese, B.E., Raven, M.A., & Stagg, S.B. (2005). Afferents and homotypic neighbors regulate horizontal cell morphology, connectivity, and retinal coverage. Journal of Neuroscience 25, 21672175.Google Scholar
Rohlich, P., van Veen, T., & Szel, A. (1994). Two different visual pigments in one retinal cone cell. Neuron 13, 11591166.CrossRefGoogle Scholar
Saugstad, P. & Saugstad, A. (1959). The duplicity theory. In Advances in Ophthalmology, Vol. 9. ed. Streif, D.B., pp. 151. Basel, Karger.
Skottun, B.C., Nordby, K., & Magnussen, S. (1981). Photopic and scotopic flicker sensitivity of a rod monochromat. Investigative Ophthalmology and Visual Science 21, 877879.Google Scholar
Sokal, I., Hu, G., Liang, Y., Mao, M., Wensel, T.G., & Palczewski, K. (2003). Identification of portein kinase C isozymes responsible for the phophorylation of photoreceptor-specific RGS9-1 at Ser475. Journal of Biological Chemistry 278, 83168325.CrossRefGoogle Scholar
Soucy, E., Wang, Y., Nirenberg, S., Nathans, J., & Meister, M. (1998). A novel signalling pathway from rod photorceptors to ganglion cells in mammalian retina. Neuron 21, 481493.CrossRefGoogle Scholar
Sterling, P. (2004). How retinal circuits optimize the transfer of visual information. In The Visual Neurosciences, Vol. 1. ed. Chalupa, L.M. & Werner, J.S., pp. 234259. Boston, Massachusetts: MIT Press.
Williams, R.A., Pollitz, C.H., Smith, J.C., & Williams, T.P. (1985). Flicker detection in the albino rat following light-induced retina damage. Physiology and Behavior 34, 259266.CrossRefGoogle Scholar
Xu, X., Quiambao, A.B., Roveri, L., Pardue, M.T., Marx, J.L., Rohlich, P., Peachy, N.S., & Al-Ubaidi, M.R. (2000). Degeneration of cone photoreceptors induced by expression of the Mas 1 protooncogene. Experimental Neurology 163, 207219.CrossRefGoogle Scholar
Ying, S., Jansen, H.T., Lehman, M.N., Fong, S.-L., & Kao, W.W.Y. (2000). Retinal degeneration in cone photoreceptor cell-ablated transgenic mice. Molecular Vision 6, 101108.Google Scholar
Yokoyama, S., Radlwimmer, F.B., & Kawamura, S. (1998). Regeneration of ultraviolet pigments of vertebrates. FEBS Letters 423, 155158.CrossRefGoogle Scholar
Zhou, G. & Williams, R.W. (1999). Mouse models for myopia: An analysis of variation in eye size in adult mice. Optometry and Vision Science 76, 408418.CrossRefGoogle Scholar