Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T19:28:36.577Z Has data issue: false hasContentIssue false

Red-green interactions in the spectral sensitivity of primates as derived from ERG and behavioral data

Published online by Cambridge University Press:  02 June 2009

Harry G. Sperling
Affiliation:
University of Texas Health Science Center at Houston, Graduate School of Biomedical Sciences, Sensory Sciences Center, Houston
Stephen L. Mills
Affiliation:
University of Texas Health Science Center at Houston, Graduate School of Biomedical Sciences, Sensory Sciences Center, Houston

Abstract

Different techniques were used to manipulate the inhibitory interaction between the red and green photoreceptors (R and G cones) of rhesus and human primates. The response techniques that were used were the corneal electroretinogram (ERG) and psychophysical increment-threshold spectral sensitivity functions. Red-green opponency, as measured by the depth of the notch at 580 nm, is removed by intravitreal injection of bicuculline but not by strychnine. Therefore, red-green opponency is mediated by GABA and not glycine. The depth of the notch is dependent upon stimulus size. Between 30' and 15' test light diameters, this sign of red-green opponency disappears. Psychophysical increment thresholds are shown to produce the notch while decrements do not and intravitreal APB is shown to reduce the notch, evidence that red-green opponency is carried by the “ON” and not the “OFF” bipolar pathways of the retina. Red and green annuli are shown to selectively reduce red and green inhibition, as though there were selective reduction of the surround response in center-surround organized red-green receptive fields.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baylor, D.A., Fuortes, M.G.F. & O'Bryan, P.M. (1971). Receptive fields of single cones in the retina of the turtle. Journal of Physiology 214, 265294.CrossRefGoogle ScholarPubMed
Boycott, B.B., Hopkins, J.M. & Sperling, H.G. (1987). Cone connections of the horizontal cells of the rhesus monkey's retina. Proceedings of the Royal Society B (London) 229, 345379.Google Scholar
Brandon, C. (1985). Retinal GABA neurons: localization in vertebrate species using an antiserum to rabbit brain glutamate decarboxylase. Brain Research 344, 286295.CrossRefGoogle ScholarPubMed
Chen, E.P.C. & Linsenmeier, R.A. (1989a). Centre components of cone-driven retinal ganglion cells: differential sensitivity to 2-amino-4-phosphono-butyric acid. Journal of Physiology 419, 7793.CrossRefGoogle Scholar
Chen, E.P.C. & Linsenmeier, R.A. (1989b). Effects of 2-amino-4-phosphono-butyric acid on responsivity and spatial summation of X cells in the cat retina. Journal of Physiology 419, 5975.CrossRefGoogle Scholar
De Monastario, F.M. & Gouras, P. (1975). Functional properties of ganglion cells of the rhesus monkey. Journal of Physiology 251, 167196.CrossRefGoogle Scholar
Dick, E., Miller, R.F. & Bloomfield, S. (1985). Extracellular K+ activity changes related to electroretinogram components, II: Rabbit (E-type) retinas. Journal of General Physiology 85, 911931.CrossRefGoogle ScholarPubMed
Dick, E., Miller, R.F. & Dacheux, R.F. (1979). Neuronal origin of b- and d-waves in the I-type ERG. Investigative Ophthalmology and Visual Science (ARVO Suppl.) 18, 34.Google Scholar
Frishman, L.J. & Steinberg, R.H. (1990). Origin of negative potentials in the light-adapted cat retina. Journal of Neurophysiology 63, 13331346.CrossRefGoogle Scholar
Gottlob, I., Wundsch, L. & Tuppy, F.K. (1988). The rabbit electroretinogram: effect of GABA and its antagonists. Vision Research 28, 203.CrossRefGoogle ScholarPubMed
Granit, R. (1947). Sensory Mechanisms of the Retina. London: Oxford University Press.Google Scholar
Grünert, U. & Wässle, H. (1990). GABA-like immunoreactivity in the macaque monkey retina: a light- and electron-microscopic study. Journal of Comparative Neurology 297, 509524.CrossRefGoogle ScholarPubMed
Haegerstrom-Portnoy, G., Verdon, W. & Adams, A.J. (1988). Cone interaction occurs in the parafovea under pi4 stimulus conditions. Vision Research 28, 397406.CrossRefGoogle Scholar
Haegerstrom-Portnoy, G. & Adams, A.J. (1988). Spatial sensitization of the B cone pathways. Vision Research 28, 629638.CrossRefGoogle Scholar
Harwerth, R.S. & Sperling, H.G. (1971). Prolonged color blindness induced by intense spectral lights in rhesus monkeys. Science 174, 520523.CrossRefGoogle ScholarPubMed
Harwerth, R.S. & Sperling, H.G. (1975). Effects of intense visible radiation on the increment-threshold spectral sensitivity of the rhesus monkey eye. Vision Research 15, 11931204.CrossRefGoogle ScholarPubMed
Heynen, H. & Van Norren, D. (1985). Origin of the electroretinogram in the intact macaque eye, II: Current source density analysis. Vision Research 25, 709716.CrossRefGoogle ScholarPubMed
Kalloniatis, M. & Harwerth, R.S. (1990). Spectral sensitivity and adaptation characteristics of cone mechanisms under white-light adaptation. Journal of the Optical Society of America A 7, 19121928.CrossRefGoogle ScholarPubMed
King-Smith, P.E. & Carden, D. (1976). Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration. Journal of the Optical Society of America 66, 709717.CrossRefGoogle ScholarPubMed
Knapp, A.G. & Schiller, P.H. (1984). The contributions of ON-bipolar cells to the electroretinogram of rabbits and monkeys. Vision Research 24, 18411846.CrossRefGoogle Scholar
Mariani, A.P. & Caserta, M.T. (1986). Electron microscopy of glutamate decarboxylase (GAD) immunoreactivity in the inner plexiform layer of the rhesus monkey retina. Journal of Neurocytology 15, 645655.CrossRefGoogle ScholarPubMed
McKee, S.P. & Westheimer, G. (1970). Specificity of cone mechanisms in lateral interaction. Journal of Physiology 206, 117128.CrossRefGoogle ScholarPubMed
Mills, S.L. & Sperling, H.G. (1990). Red/green opponency in the rhesus macaque ERG spectral sensitivity is reduced by bicuculline. Visual Neuroscience 5, 217221.CrossRefGoogle ScholarPubMed
Mullen, K.T. (1985). The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. Journal of Physiology 359, 381400.CrossRefGoogle ScholarPubMed
Neal, M.J. & Massey, S.C. (1980). The release of acetylcholine and amino acids from the rabbit retina in vivo. Neurochemistry International 1, 191208.CrossRefGoogle Scholar
Noorlander, C., Heuts, M.J.G. & Koenderink, J.J. (1981). Sensitivity to spatio-temporal combined luminance and chromaticity contrast. Journal of the Optical Society of America 71, 453459.CrossRefGoogle Scholar
Redburn, D. & MadtesP., Jr. P., Jr. (1986). Postnatal development of [3H]-GABA-accumulating cells in rabbit retina. Journal of Comparative Neurology 243, 4165.CrossRefGoogle ScholarPubMed
Sarthy, P.J. & Fu, M. (1989). Localization of L-glutamic acid decarboxylase mRNA in monkey and human retina by in situ hybridization. Journal of Comparative Neurology 288, 691697.CrossRefGoogle ScholarPubMed
Schiller, P.H., Sandell, J.H. & Maunsell, J.H.R. (1986). Functions of the ON and OFF channels of the visual system. Nature 322, 824825.CrossRefGoogle ScholarPubMed
Schuurmans, R.P. & Zrenner, E. (1981). Responses of the blue-sensitive cone system from the visual cortex and the arterially perfused eye in cat and monkey. Vision Research 21, 16111615.CrossRefGoogle Scholar
Slaughter, M.M. & Miller, R.F. (1981). 2-Amino-4-phosphono-butyric acid: a new pharmacological tool for retina research. Science 211, 182185.CrossRefGoogle Scholar
Smith, E.L. III, Harwerth, R.S., Crawford, M.L.J. & Duncan, G.C. (1989). Contribution of the retinal ON channel to scotopic and photopic spectral sensitivity. Visual Neuroscience 3, 225239.CrossRefGoogle ScholarPubMed
Smith, V.C. & Pokorny, J. (1975). Spectral sensitivity of the cone photopigments between 400 and 500 nm. Vision Research 15, 161165.CrossRefGoogle ScholarPubMed
Sperling, H.G. & Harwerth, R.S. (1971). Red-green cone interactions in the increment-threshold spectral sensitivity of primates. Science 172, 180184.CrossRefGoogle ScholarPubMed
Sperling, H.G. & Lewis, W.G. (1959). Some comparisons between foveal spectral sensitivity data obtained at high brightness and absolute threshold. Journal of the Optical Society of America 49, 983989.CrossRefGoogle ScholarPubMed
Sperling, H.G. & Mills, S.L. (1987). ERG and behavioral analysis of spectral sensitivity in normal and blue-blind rhesus monkeys. In Colour Vision Deficiencies, Vol. VIII, ed. Verriest, G. pp. 365374. Dordrecht, Netherlands: Nihoff/Junk Publishers.Google Scholar
Starr, M. (1975). The effects of various amino acids, dopamine, and some convulsants on the electroretinogram of the rabbit. Experimental Eye Research 21, 7987.CrossRefGoogle ScholarPubMed
Stockman, A. (1984). Spectral sensitivity of the cones? Ph.D. Thesis, Cambridge University, England (quoted in Haegerstrom-Portnoy et al., 1988).Google Scholar
Stockton, R.A. & Slaughter, M.M. (1989). B-wave of the electroretinogram: a reflection of ON-bipolar cell activity. Journal of General Physiology 93, 101122.CrossRefGoogle ScholarPubMed
Stromeyer, C.F. (1983). Spatial sensitization and desensitization with small adapting fields: interaction of signals from different classes of cones. Vision Research 23, 621630.CrossRefGoogle ScholarPubMed
Stromeyer, C.F., Cole, G.R. & Kronauer, R.E. (1985). Second site adaptation in the red-green chromatic pathways. Vision Research 25, 219237.CrossRefGoogle ScholarPubMed
Tomita, T. & Yanagida, T. (1981). Origins of the ERG waves. Vision Research 21, 17031707.CrossRefGoogle ScholarPubMed
Valeton, J.M. & Van Norren, D. (1979). Transient tritanopia at the level of the ERG b-wave. Vision Research 19, 689693.CrossRefGoogle ScholarPubMed
Van Norren, D. & Baron, W.S. (1977). Increment spectral sensitivities of the primate late receptor potential and b-wave. Vision Research 17, 807810.CrossRefGoogle ScholarPubMed
Wässle, H. & Chun, M.H. (1989). GABA-like immunoreactivity in the cat retina: light microscopy. Journal of Comparative Neurology 279, 4354.CrossRefGoogle ScholarPubMed
Wässle, H., Müller, F. & Voigt, T. (1988). APB blocks light responses of all ganglion cells in the dark-adapted cat retina. Investigative Ophthalmology and Visual Science (Suppl.) 29, 224.Google Scholar
Westheimer, G. (1967). Spatial interaction in human cone vision. Journal of Physiology 190, 139154.CrossRefGoogle ScholarPubMed
Yazulla, S. (1986). GABAergic mechanisms in the retina. Progress in Retinal Research 5, 152.CrossRefGoogle Scholar