Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T20:01:50.077Z Has data issue: false hasContentIssue false

Recognition of facial emotion in low vision: A flexible usage of facial features

Published online by Cambridge University Press:  01 July 2008

MURIEL BOUCART*
Affiliation:
Lab. Neuroscience Fonctionnelle et Pathologies, Université Lille 2, CNRS, Lille, France
JEAN-FRANÇOIS DINON
Affiliation:
Lab. Neuroscience Fonctionnelle et Pathologies, Université Lille 2, CNRS, Lille, France
PASCAL DESPRETZ
Affiliation:
Lab. Neuroscience Fonctionnelle et Pathologies, Université Lille 2, CNRS, Lille, France
THOMAS DESMETTRE
Affiliation:
Centre d'Imagerie, de Laser et de Réadaptation Basse Vision, Lambersart, France
KATRINE HLADIUK
Affiliation:
Centre d'Imagerie, de Laser et de Réadaptation Basse Vision, Lambersart, France
AUDE OLIVA
Affiliation:
Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts
*
*Address correspondence and reprint requests to: Muriel Boucart, CHRU Lille, Hôpital Roger Salengro, service EFV, Lab. Neurosciences Fonctionnelles & Pathologies CNRS (UMR 8160), 59037 Lille, France. E-mail: [email protected]

Abstract

Age-related macular degeneration (AMD) is a major cause of visual impairment in people older than 50 years in Western countries, affecting essential tasks such as reading and face recognition. Here we investigated the mechanisms underlying the deficit in recognition of facial expressions in an AMD population with low vision. Pictures of faces displaying different emotions with the mouth open or closed were centrally displayed for 300 ms. Participants with AMD with low acuity (mean 20/200) and normally sighted age-matched controls performed one of two emotion tasks: detecting whether a face had an expression or not (expressive/non expressive (EXNEX) task) or categorizing the facial emotion as happy, angry, or neutral (categorization of expression (CATEX) task). Previous research has shown that healthy observers are mainly using high spatial frequencies in an EXNEX task while performance at a CATEX task was preferentially based on low spatial frequencies. Due to impaired processing of high spatial frequencies in central vision, we expected and observed that AMD participants failed at deciding whether a face was expressive or not but categorized normally the emotion of the face (e.g., happy, angry, neutral). Moreover, we observed that AMD participants mostly identified emotions using the lower part of the face (mouth). Accuracy did not differ between the two tasks for normally sighted observers. The results indicate that AMD participants are able to identify facial emotion but must base their decision mainly on the low spatial frequencies, as they lack the perception of finer details.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachmann, T. (1991). Identification of spatially quantized tachistoscopic images of faces: how many pixels does it take to carry identity? European Journal of Cognitive Psychology 3, 85103.CrossRefGoogle Scholar
Brody, B.L., Gamst, A.C., Williams, R.A., Smith, A.R., Lau, P.W., Dolnak, D., Rapaport, M.H., Kaplan, R.M. & Brown, S.I. (2001). Depression, visual acuity, comorbidity, and disability associated with age-related macular degeneration. Ophthalmology 108, 18931901.CrossRefGoogle ScholarPubMed
Bullimore, M.A., Bailey, I.L. & Wacker, R.T. (1991). Face recognition in age-related maculopathy. Investigative Ophthalmology & Visual Science 32, 20202029.Google ScholarPubMed
Calder, A.J., Young, A.W., Keene, J. & Dean, M. (2002). Configural information in facial expression perception. Journal of Experimental Psychology: Human Perception and Performance 26, 527551.Google Scholar
Calder, A.J., Young, A.W., Perrett, D.I., Etcoff, N.L. & Rowland, D. (1996). Categorical perception of morphed facial expressions. Visual Cognition 3, 81117.CrossRefGoogle Scholar
Cellerino, A., Borghetti, D. & Sartucci, F. (2004). Sex differences in face gender recognition in humans. Brain Research Bulletin 63, 443449.CrossRefGoogle ScholarPubMed
Cheung, S.H. & Legge, G.E. (2005). Functional and cortical adaptations to central vision loss. Visual Neuroscience 22, 187201.CrossRefGoogle ScholarPubMed
Cohen, S.Y., Delhoste, B., Beaunoir, M.P., Can, F., Martin, D. & Pessana, J. (2000). Guide pratique de rééducation des basses visions. Paris, France: Ed EMC.Google Scholar
Costen, N.P., Parker, D.M. & Craw, I. (1994). Spatial content and spatial quantisation effects in face recognition. Perception 23, 129146.CrossRefGoogle ScholarPubMed
Costen, N.P., Parker, D.M. & Craw, I. (1996). Effects of high-pass and low-pass spatial filtering on face identification. Perception & Psychophysics 58, 602612.CrossRefGoogle ScholarPubMed
Desmettre, T., Devoisselle, J.M. & Mordon, S. (2000). Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Survey of Ophthalmology 45, 1527.CrossRefGoogle ScholarPubMed
Ebert, E.M., Fine, A.M. & Markowitz, J. (1986). Functional vision in patients with neovascular maculopathy and poor visual acuity. Archives of Ophthalmology 104, 10091012.CrossRefGoogle ScholarPubMed
Faubert, J. & Overbury, O. (2000). Binocular vision in older people with adventious visual impairment: Sometimes one eye is better than two. Journal of the American Geriatrics Society 48, 375380.CrossRefGoogle Scholar
Fine, E.M. & Rubin, G.S. (1999). Reading with central field loss: Number of letters masked is more important than the size of the mask in degrees. Vision Research 39, 747756.CrossRefGoogle Scholar
Fiorentini, A., Maffei, L. & Sandini, G. (1983). The role of high spatial frequencies in face perception. Perception 12, 195201.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E. & McHugh, P.R. (1975). “Mini-mental state,” a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12, 189198.CrossRefGoogle Scholar
Gosselin, F. & Schyns, P.G. (2001). Bubbles: A technique to reveal the use of information in recognition tasks. Vision Research 41, 22612271.CrossRefGoogle ScholarPubMed
Güntekin, B. & Başar, E. (2007). Gender differences influence brain's beta oscillatory responses in recognition of facial expressions. Neuroscience Letters 424, 9499.CrossRefGoogle ScholarPubMed
Halit, H., de Haan, M., Schyns, P.G. & Johnson, M.H. (2006). Is high spatial frequency information used in the early stages of face detection? Brain Research 1117, 154161.CrossRefGoogle ScholarPubMed
Hanutsaha, P., Guyer, D.R., Yannuzzi, L.A., Naing, A., Slakter, J.S., Sorenson, J.S., Spaide, R.F., Freund, K.B., Feinsod, M. & Orlock, D.A. (1998). Indocyanine-green videoangiography of drusen as a possible predictive indicator of exudative maculopathy. Ophthalmology 105, 16321636.CrossRefGoogle ScholarPubMed
Hart, P.M., Chakravarthy, U., Stevenson, M.R. & Jamison, J.Q. (1999). A vision specific functional index for use in patients with age related macular degeneration. British Journal of Ophthalmology 83, 11151120.CrossRefGoogle ScholarPubMed
Hassan, S.E., Lovie-Kitchin, J.E. & Woods, R.L. (2002). Vision and mobility performance of subjects with age-related macular degeneration. Optometry and Vision Science 79, 697707.CrossRefGoogle ScholarPubMed
Higgins, K.E., Arditi, A. & Knoblauch, K. (1996). Detection and identification of mirror-image letter pairs in central and peripheral vision. Vision Research 36, 331337.CrossRefGoogle ScholarPubMed
Holzschuch, C., Mourey, F. & Manière, D. (2002). Gériatrie et basse-vision: Pratiques interdisciplinaires. Paris, France: Ed Masson.Google Scholar
Jin, C.J., Wu, D.Z. & Wu, L. (1992). The contrast sensitivity function in low vision. Yan Ke Xue Bao 8, 4548.Google ScholarPubMed
Kleiner, R.C., Enger, C., Alexander, M.E. & Fine, S.L. (1988). Contrast sensitivity in age-related macular degeneration. Archives of Ophthalmology 106, 5557.CrossRefGoogle ScholarPubMed
Kulkarni, A.D. & Kupperman, B.D. (2005). Wet age-related macular degeneration. Advanced Drug Delivery Reviews 57, 19942009.CrossRefGoogle ScholarPubMed
Legge, G.E., Mansfield, J.S. & Chung, S.T.L. (2001). Psychophysics of reading XX. Linking letter recognition to reading speed in central and peripheral vision. Vision Research 41, 725743.CrossRefGoogle ScholarPubMed
Legge, G.E., Ross, J.A., Isenberg, L.M. & LaMay, J.M. (1992). Psychophysics of reading. Clinical predictors of low-vision reading speed. Investigative Ophthalmology & Visual Science 33, 677687.Google ScholarPubMed
Legge, G.E., Rubin, G.S., Pelli, D.G. & Schleske, M.M. (1985). Psychophysics of reading—II. Low vision. Vision Research 25, 253265.CrossRefGoogle ScholarPubMed
Loftus, G.R. & Harley, E.M. (2005). Why is it easier to identify someone closer than far away? Psychonomic Bulletin and Review 12, 4365.CrossRefGoogle Scholar
Lott, L.A., Haegerstrom-Portnoy, G., Schneck, M.E. & Brabyn, J.A. (2005). Face recognition in the elderly. Optometry and Vision Science 82, 874881.CrossRefGoogle ScholarPubMed
Mangione, C.M., Gutierrez, P.R., Lowe, G., Orav, E.J. & Seddon, J.M. (1999). Influence of age-related maculopathy on visual functioning and health-related quality of life. American Journal of Ophthalmology 128, 4553.CrossRefGoogle ScholarPubMed
Maurer, D., Le Grand, R. & Mondloch, C.J. (2002). The many faces of configural processing. Trends in Cognitive Sciences 6, 255260.CrossRefGoogle ScholarPubMed
Midena, E., Degli Angeli, C., Blarzino, M.C., Valenti, M. & Segato, T. (1997). Macular function impairment in eyes with early age-related macular degeneration. Investigative Ophthalmology & Visual Science 38, 469477.Google ScholarPubMed
Morrison, D.J. & Schyns, P.G. (2001). Usage of spatial scales for the categorisation of faces, objects and scenes. Psychonomic Bulletin & Review 8, 454469.CrossRefGoogle ScholarPubMed
Nilsson, U.L., Frennesson, C. & Nilsson, S.E.G. (2003). Patients with AMD and a large absolute central scotoma can be trained successfully to use eccentric viewing, as demonstrated in a scanning laser ophthalmoscope. Vision Research 43, 17771787.CrossRefGoogle Scholar
Oliva, A. & Schyns, P.G. (1997). Coarse blobs or fine edge? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology 34, 72107.CrossRefGoogle ScholarPubMed
Owsley, C., Sekuler, R. & Boldt, C. (1981). Aging and low-contrast vision: Face perception. Investigative Ophthalmology & Visual Science 21, 362365.Google ScholarPubMed
Owsley, C. & Sloane, M.E. (1987). Contrast sensitivity, acuity, and the perception of “real-world” targets. British Journal of Ophthalmology 71, 791796.CrossRefGoogle ScholarPubMed
Peli, E. (1994). Image enhancement for the visually impaired: The effect of enhancement on face recognition. Journal of Optical Society of America A 11, 10291039.CrossRefGoogle ScholarPubMed
Penfold, P.L., Madigan, M.C., Gillies, M.C. & Provis, J.M. (2001). Immunological and aetiological aspects of macular degeneration. Progress in Retinal and Eye Research 20, 385414.CrossRefGoogle ScholarPubMed
Peterson, M.A. & Rhodes, G. (2005). Perception of Faces, Objects, and Scenes: Analytic and Holistic Processes. New York: Oxford University Press.Google Scholar
Regillo, C.D., Blade, K.A., Custis, P.H. & O'Connel, S.R. (1998). Evaluating persistent and recurrent choroidal neovascularization: The role of indocyanine green angiography. Ophthalmology 105, 18211826.CrossRefGoogle ScholarPubMed
Schyns, P.G. & Gosselin, F. (2005). Diagnostic use of scale information for componential and holistic recognition. In Perception of Faces, Objects, and Scenes: Analytic and Holistic Processes, ed. Peterson, M.A. & Rhodes, G., pp. 120145. New York: Oxford University Press.Google Scholar
Schyns, P.G. & Oliva, A. (1997). Flexible, diagnosticity-driven, rather than fixed, perceptually determined scale selection in scene and face recognition. Perception 26, 10271038.CrossRefGoogle ScholarPubMed
Schyns, P.G. & Oliva, A. (1999). Dr. Angry and Mr. Smile: When categorisation flexibly modifies the perception of faces in rapid visual presentations. Cognition 69, 243265.CrossRefGoogle Scholar
Sergent, J. (1984). An investigation into component and configural processes underlying face perception. British Journal of Psychology 75, 221242.CrossRefGoogle ScholarPubMed
Sergent, J. (1986). Microgenesis of face perception. In Aspects of Face Processing, ed. Ellis, D.H., Jeeves, M.A., Newcombe, F. & Young, A., pp. 1773. Dordrecht, The Netherlands: Martinus Nijhoff.CrossRefGoogle Scholar
Sergent, J., Ohta, S. & MacDonald, B. (1992). Functional neuroanatomy of face and object processing: A positron emission tomography study. Brain 115, 1536.CrossRefGoogle ScholarPubMed
Sjostrand, J. & Friseu, L. (1977). Contrast sensitivity in macular report. A preliminary report. Acta Ophthalmologica (Copenh) 55, 507514.CrossRefGoogle ScholarPubMed
Smith, M.L., Cottrel, G.W., Gosselin, F. & Schyns, P.G. (2005). Transmitting and decoding facial expression. Psychological Science 16, 184189.CrossRefGoogle Scholar
Tarita-Nistor, L., Gonzales, E.G., Markowitz, S.N. & Steinbach, M.J. (2006). Binocular function in patients with age-related macular degeneration: A review. Canadian Journal of Ophthalmology 41, 327332.CrossRefGoogle ScholarPubMed
Tejeria, L., Harper, R.A., Artes, P.H. & Dickinson, C.M. (2002). Face recognition in age related macular degeneration: Perceived disability, measured disability, and performance with a bioptic device. British Journal of Ophthalmology 86, 10191026.CrossRefGoogle ScholarPubMed
Thayer, J.F. & Johnsen, B.H. (2000). Sex differences in judgement of facial affect: A multivariate analysis of recognition errors. Scandinavian Journal of Psychology 41, 243246.CrossRefGoogle ScholarPubMed
Vuilleumier, P., Armony, J.L., Driver, J. & Dolan, R.J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neurosciences 6, 624631.CrossRefGoogle ScholarPubMed
Whittaker, S.G., Budd, J. & Cummings, R.W. (1988). Eccentric fixation with macular scotoma. Investigative Ophthalmology & Visual Science 29, 268278.Google ScholarPubMed