Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T23:49:53.141Z Has data issue: false hasContentIssue false

Psychophysical evidence for area V2 involvement in the reduction of subjective contour tilt aftereffects by binocular rivalry

Published online by Cambridge University Press:  02 June 2009

Rick van der Zwan
Affiliation:
University of Sydney, 2006, Australia
Peter Wenderoth
Affiliation:
University of Sydney, 2006, Australia

Abstract

Previous research suggests binocular rivalry disrupts extrastriate, but not striate processes, although the locus along the visual pathway at which such disruption first occurs is uncertain. It has been argued that subjective contours arise via a two-stage process in which end-stopped cells feed into orientation-sensitive neurones in V2, and that orientation aftereffects induced with subjective contours are the product of mechanisms similar to those giving rise to real contour aftereffects. If binocular rivalry disrupts the acquisition of subjective contour aftereffects, then it follows from this model that rivalry disrupts processing in V2. Experiments reported here confirm this and provide evidence which suggests binocular rivalry arises through interactions between binocular neurones, rather than via some type of specialized binocular rivalry mechanism.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allman, J.M., Miezin, F. & McGuinness, E. (1985 a). Stimulus specific responses from beyond the classical receptive field: Neurophys-iological mechanisms for local-global comparisons in visual neurones. Annual Review of Neuroscience 8, 407430.CrossRefGoogle Scholar
Allman, J.M., Miezin, F. & McGuinness, E. (1985 b). Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception 14, 105126.CrossRefGoogle ScholarPubMed
Blake, R. (1989). A neural theory of binocular rivalry. Psychological Review 96, 145167.CrossRefGoogle ScholarPubMed
Blake, R. & Fox, R. (1974). Adaptation to invisible gratings and the site of binocular rivalry suppression. Nature 249, 488490.CrossRefGoogle ScholarPubMed
Blake, R., O’Shea, R. & Mueller, T.J. (1992). Spatial zones of binocular rivalry in central and peripheral vision. Visual Neuroscience 8, 469478.CrossRefGoogle ScholarPubMed
Blake, R. & Overton, R. (1979). The site of binocular rivalry suppression. Perception 8, 143152.CrossRefGoogle ScholarPubMed
Carpenter, R.H.S. & Blakemore, C. (1973). Interactions between orientations in human vision. Experimental Brain Research 18, 287303.CrossRefGoogle ScholarPubMed
Gibson, J.J. & Radner, M. (1937). Adaptation, aftereffect and contrast in the perception of tilted lines. 1. Quantitative studies. Journal of Experimental Psychology 20, 453467.CrossRefGoogle Scholar
Grosof, D.H., Shapley, R.M. & Hawken, M.J. (1993). Macaque-Vl neurons can signal illusory contours. Nature 365, 550552.CrossRefGoogle ScholarPubMed
Howard, I. (1982). Human Visual Orientation. New York: Wiley.Google Scholar
Julesz, B. (1971). Foundations of Cyclopean Perception. Chicago, Illinois: Chicago University Press.Google Scholar
Lehmkuhle, S.W. & Fox, R. (1975). Effect of binocular rivalry suppression on the motion aftereffect. Vision Research 15, 855859.CrossRefGoogle ScholarPubMed
Lesher, G. & Mingolla, E. (1993). The role of edges and line-ends in illusory contour formation. Vision Research 33, 22532270.CrossRefGoogle ScholarPubMed
Levelt, W.J.M. (1968). On Binocular Rivalry. The Hague (Netherlands): Mouton.Google Scholar
Logothetis, N.K. & Schall, J.D. (1989). Neural correlates of subjective visual perception. Science 245, 761763.CrossRefGoogle Scholar
Morgan, M.J. (1989). Watching neurones discriminate. Nature 341, 2021.CrossRefGoogle ScholarPubMed
Mueller, T.J. (1990). A physiological model of binocular rivalry. Visual Neuroscience 4, 6373.CrossRefGoogle ScholarPubMed
Mueller, T.J. & Blake, R. (1989). A fresh look at the temporal dynamics of binocular rivalry. Biological Cybernetics 61, 223232.CrossRefGoogle Scholar
O’Shea, R.P. & Crassini, B. (1981). Interocular transfer of the motion after-effect is not reduced by binocular rivalry. Vision Research 21, 801804.CrossRefGoogle Scholar
Paradiso, M.A., Shimojo, S., & Nakayama, K. (1989). Subjective contours, tilt aftereffects, and visual cortical organisation. Vision Research 29, 12051213.CrossRefGoogle Scholar
Peterhans, E. & R., von der Heydt (1989). Mechanisms of contour in monkey visual cortex. 2. Contours bridging gaps. Journal of Neuroscience 9, 17491763.CrossRefGoogle ScholarPubMed
Reims, S., Weiss, D.S. & Landolt, J.P. (1988). Lack of homogeneity of receptive fields of visual neurones in the cortical area 18 of the cat. Biological Cybernetics 59, 4148.CrossRefGoogle Scholar
Sagawa, K. (1981). Minimum light intensity required for colour rivalry. Vision Research 21, 14671474.CrossRefGoogle Scholar
Smith, A.T. & Over, R. (1977). Orientation masking and the tilt illusion with subjective contours. Perception 6, 441447.CrossRefGoogle ScholarPubMed
Tootell, R.B.H. & Hamilton, S. (1989). Functional anatomy of the second visual area (V2) in the macaque. Journal of Neuroscience 9, 26202644.CrossRefGoogle ScholarPubMed
van der Zwan, R. & Wenderoth, P. (1993). Substrates of subjective contour tilt aftereffects (submitted).Google Scholar
van der Zwan, R., Wenderoth, P. & Alais, D. (1993). Reduction of a pattern-induced motion aftereffect by binocular rivalry suggests the involvement of extrastriate mechanisms. Visual Neuroscience 10, 703709.CrossRefGoogle ScholarPubMed
van Essen, D.C., Anderson, C.H. & Felleman, D.J. (1992). Information processing in the primate visual system: An integrated systems perspective. Science 255, 419423.CrossRefGoogle ScholarPubMed
von der Heydt, R. & Peterhans, E. (1989). Mechanisms of contour perception in monkey visual cortex. 1. Lines of pattern discontinuity. Journal of Neuroscience 9, 17311748.CrossRefGoogle Scholar
Wade, N.J. & Wenderoth, P. (1978). The influence of colour and contrast rivalry on the magnitude of the tilt aftereffect. Vision Research 18, 827835.CrossRefGoogle Scholar
Wenderoth, P. (1994). On the relationship between the psychology of visual perception and the neurophysiology of vision. Australian Journal of Psychology (in press).CrossRefGoogle Scholar
Wenderoth, P. & Johnstone, S. (1987). Possible neural substrates for orientation analysis and perception. Perception 16, 693709.CrossRefGoogle ScholarPubMed
Wenderoth, P. & Johnstone, S. (1988). The different mechanisms of the direct and indirect tilt illusion. Vision Research 28, 301312.CrossRefGoogle Scholar
Wenderoth, P., van der Zwan, R. & Williams, M. (1993). Direct evidence for competition between local and global mechanisms of two-dimensional orientation illusions. Perception 22, 273286.CrossRefGoogle ScholarPubMed
Wiesenfelder, H. & Blake, R. (1990). The site of binocular rivalry relative to the analysis of motion in the human visual system. Journal of Neuroscience 10, 38803888.CrossRefGoogle Scholar