Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T05:24:29.520Z Has data issue: false hasContentIssue false

The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion

Published online by Cambridge University Press:  18 February 2008

A. ANTAL
Affiliation:
Department of Clinical Neurophysiology, Georg-August University of Göttingen, Göttingen, Germany
J. BAUDEWIG
Affiliation:
MR-Research in Neurology and Psychiatry, Georg-August University of Göttingen, Göttingen, Germany
W. PAULUS
Affiliation:
Department of Clinical Neurophysiology, Georg-August University of Göttingen, Göttingen, Germany
P. DECHENT
Affiliation:
MR-Research in Neurology and Psychiatry, Georg-August University of Göttingen, Göttingen, Germany

Abstract

The posterior cingulate cortex (PCC) is involved in higher order sensory and sensory-motor integration while the planum temporale/parietal operculum (PT/PO) junction takes part in auditory motion and vestibular processing. Both regions are activated during different types of visual stimulation. Here, we describe the response characteristics of the PCC and PT/PO to basic types of visual motion stimuli of different complexity (complex and simple coherent as well as incoherent motion). Functional magnetic resonance imaging (fMRI) was performed in 10 healthy subjects at 3 Tesla, whereby different moving dot stimuli (vertical, horizontal, rotational, radial, and random) were contrasted against a static dot pattern. All motion stimuli activated a distributed cortical network, including previously described motion-sensitive striate and extrastriate visual areas. Bilateral activations in the dorsal region of the PCC (dPCC) were evoked using coherent motion stimuli, irrespective of motion direction (vertical, horizontal, rotational, radial) with increasing activity and with higher complexity of the stimulus. In contrast, the PT/PO responded equally well to all of the different coherent motion types. Incoherent (random) motion yielded significantly less activation both in the dPCC and in the PT/PO area. These results suggest that the dPCC and the PT/PO take part in the processing of basic types of visual motion. However, in dPCC a possible effect of attentional modulation resulting in the higher activity evoked by the complex stimuli should also be considered. Further studies are warranted to incorporate these regions into the current model of the cortical motion processing network.

Type
Research Article
Copyright
© 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baudewig, J., Dechent, P., Merboldt, K.D. & Frahm, J. (2003). Thresholding in correlation analyses of magnetic resonance functional neuroimaging. Magnetic Resonance Imaging 21, 11211130.Google Scholar
Beckers, G. & Homberg, V. (1992). Cerebral visual motion blindness: Transitory akinetopsia induced by transcranial magnetic stimulation of human area V5. Proceedings Biological Sciences 249, 173178.Google Scholar
Berthoz, A. (1997). Parietal and hippocampal contribution to topokinetic and topographic memory. Philosophical Transactions of the Royal Society of Biological Sciences 352, 14371448.Google Scholar
Born, R.T. & Bradley, D.C. (2005). Structure and function of visual area MT. Annual Review of Neuroscience 28, 15789.Google Scholar
Braddick, O.J., O'Brien, J.M., Wattam-Bell, J., Atkinson, J., Hartley, T. & Turner, R. (2001). Brain areas sensitive to coherent visual motion. Perception 30, 6172.Google Scholar
Brandt, T., Bucher, S.F., Seelos, K.C. & Dieterich, M. (1998). Bilateral functional MRI activation of the basal ganglia and middle temporal/medial superior temporal motion-sensitive areas: optokinetic stimulation in homonymous hemianopia. Achieve of Neurology 55, 11261131.Google Scholar
Brandt, T. & Dieterich, M. (1999). The vestibular cortex. Its locations, functions, and disorders. Annals of the New York Academy of Sciences 871, 293312.Google Scholar
Büchel, C., Josephs, O., Rees, G., Turner, R., Frith, C.D. & Friston, K.J. (1998). The functional anatomy of attention to visual motion. A functional MRI study. Brain 121, 12811294.Google Scholar
Carter, C.S., Botvinick, M.M. & Cohen, J.D. (1999). The contribution of the anterior cingulate cortex to executive processes in cognition. Review of Neuroscience 10, 4957.Google Scholar
Cheng, K., Fujita, H., Kanno, I., Miura, S. & Tanaka, K. (1995). Human cortical regions activated by wide-field visual motion: An H215O PET study. Journal of Neurophysiology 74, 413427.Google Scholar
Claeys, K.G., Lindsey, D.T., De Schutter, E. & Orban, G.A. (2003). A higher order motion region in human inferior parietal lobule: Evidence from fMRI. Neuron 40, 631642.Google Scholar
Cornette, L., Dupont, P., Rosier, A., Sunaert, S., Van Hecke, P., Michiels, J., Mortelmans, L. & Orban, G.A. (1998b). Human brain regions involved in direction discrimination. Journal of Neurophysiology 79, 27492765.Google Scholar
Cornette, L., Dupont, P., Spileers, W., Sunaert, S., Michiels, J., Van Hecke, P., Mortelmans, L. & Orban, G.A. (1998a). Human cerebral activity evoked by motion reversal and motion onset. A PET study. Brain 121, 143157.Google Scholar
Dieterich, M., Bense, S., Stephan, T., Yousry, T.A. & Brandt, T. (2003). fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Experimental Brain Research 148, 117127.Google Scholar
Dupont, P., Orban, G.A., De Bruyn, B., Verbruggen, A. & Mortelmans, L. (1994). Many areas in the human brain respond to visual motion. Journal of Neurophysic 72, 14201424.Google Scholar
Eickhoff, S.B., Weiss, P.H., Amunts, K., Fink, G.R. & Zilles, K. (2006). Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Human Brain Mapping 27, 611621.Google Scholar
Franconeri, S.L. & Simons, D.J. (2003). Moving and looming stimuli capture attention. Percept Psychophysics 65, 9991010.Google Scholar
Genovese, C.R., Lazar, N.A. & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15, 870878.Google Scholar
Gulyas, B., Heywood, C.A., Popplewell, D.A., Roland, P.E. & Cowey, A. (1994). Visual form discrimination from color or motion cues: Functional anatomy by positron emission tomography. Proceedings of the National Academy of Sciences 91, 99659969.Google Scholar
Indovina, I., Maffei, V., Bosco, G., Zago, M., Macaluso, E. & Lacquaniti, F. (2005). Representation of visual gravitational motion in the human vestibular cortex. Science 308, 416419.Google Scholar
Kataoka, H., Sugie, K., Kohara, N. & Ueno, S. (2006). Novel representation of astasia associated with posterior cingulate infarction. Stroke 37, 35.Google Scholar
Kleinschmidt, A., Requardt, M., Merboldt, K.D. & Frahm, J. (1995). On the use of temporal correlation coefficients for magnetic resonance mapping of functional brain activation: Individualized thresholds and spatial response delineation. International Journal of Imaging Systems and Technology 6, 238244.Google Scholar
Kleinschmidt, A., Thilo, K.V., Buchel, C., Gresty, M.A., Bronstein, A.M. & Frackowiak, R.S. (2002). Neural correlates of visual-motion perception as object- or self-motion. Neuroimage 16, 873882.Google Scholar
Krumbholz, K., Schonwiesner, M., Rubsamen, R., Zilles, K., Fink, G.R. & von Cramon, D.Y. (2005). Hierarchical processing of sound location and motion in the human brainstem and planum temporale. European Journal of Neuroscience 21, 230238.Google Scholar
Luks, T.L. & Simpson, G.V. (2004). Preparatory deployment of attention to motion activates higher-order motion-processing brain regions. Neuroimage 22, 15151522.Google Scholar
Martinez-Trujillo, J.C., Tsotsos, J.K., Simine, E., Pomplun, M., Wildes, R., Treue, S., Heinze, H.J. & Hopf, J.M. (2005). Selectivity for speed gradients in human area MT/V5. Neuroreport 16, 435438.Google Scholar
McKeefry, D.J., Watson, J.D., Frackowiak, R.S., Fong, K. & Zeki, S. (1997). The activity in human areas V1/V2, V3, and V5 during the perception of coherent and incoherent motion. Neuroimage 5, 112.Google Scholar
Morrone, M.C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G. & Burr, D.C. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI. Nature Neuroscience 3, 13221328.Google Scholar
Nawrot, M. (2003). Disorders of motion and depth. Neurologic Clincs 21, 609629.Google Scholar
Orban, G.A., Fize, D., Peuskens, H., Denys, K., Nelissen, K., Sunaert, S., Todd, J. & Vanduffel, W. (2003). Similarities and differences in motion processing between the human and macaque brain: Evidence from fMRI. Neuropsychology 41, 17571768.Google Scholar
Paradis, A.L., Cornilleau-Peres, V., Droulez, J., Van De Moortele, P.F., Lobel, E., Berthoz, A., Le Bihan, D. & Poline, J.B. (2000). Visual perception of motion and 3-D structure from motion: An fMRI study. Cerebral Cortex 10, 772783.Google Scholar
Pavani, F., Macaluso, E., Warren, J.D., Driver, J. & Griffiths, T.D. (2002). A common cortical substrate activated by horizontal and vertical sound movement in the human brain. Current Biology 12, 15841590.Google Scholar
Pekkola, J., Ojanen, V., Autti, T., Jaaskelainen, I.P., Mottonen, R. & Sams, M. (2006). Attention to visual speech gestures enhances hemodynamic activity in the left planum temporale. Human Brain Mapping 27, 471477.Google Scholar
Rees, G., Friston, K. & Koch, C. (2000). A direct quantitative relationship between the functional properties of human and macaque V5. Nature Neuroscience 3, 716723.Google Scholar
Sadato, N., Okada, T., Honda, M., Matsuki, K., Yoshida, M., Kashikura, K., Takei, W., Sato, T., Kochiyama, T. & Yonekura, Y. (2005). Cross-modal integration and plastic changes revealed by lip movement, random-dot motion and sign languages in the hearing and deaf. Cerebral Cortex 15, 11131122.Google Scholar
Shipp, S., de Jong, B.M., Zihl, J., Frackowiak, R.S. & Zeki, S. (1994). The brain activity related to residual motion vision in a patient with bilateral lesions of V5. Brain 17, 10231038.Google Scholar
Smith, A.T., Wall, M.B., Williams, A.L. & Singh, K.D. (2006). Sensitivity to optic flow in human cortical areas MT and MST. European Journal of Neuroscience 23, 561569.Google Scholar
Solomon, J.A. & Sperling, G. (1995). 1st- and 2nd-order motion and texture resolution in central and peripheral vision. Vision Research 35, 5964.Google Scholar
Stebbins, G.T., Goetz, C.G., Carrillo, M.C., Bangen, K.J., Turner, D.A., Glover, G.H. & Gabrieli, J.D. (2004). Altered cortical visual processing in PD with hallucinations: An fMRI study. Neurology 63, 14091416.Google Scholar
Stein, J.F. (1994). Developmental dyslexia, neural timing and hemispheric lateralisation. International Journal of Psychophysiology 18, 241249.Google Scholar
Stiers, P., Peeters, R., Lagae, L., Van Hecke, P. & Sunaert, S. (2006). Mapping multiple visual areas in the human brain with a short fMRI sequence. Neuroimage 29, 7489.Google Scholar
Sunaert, S., Van Hecke, P., Marchal, G. & Orban, G.A. (1999). Motion-responsive regions of the human brain. Experimental Brain Research 127, 355370.Google Scholar
Turano, K.A., Yu, D., Hao, L. & Hicks, J.C. (2005). Optic-flow and egocentric-direction strategies in walking: Central vs. peripheral visual field. Vision Research 45, 31173132.Google Scholar
Vanduffel, W., Fize, D., Peuskens, H., Denys, K., Sunaert, S., Todd, J.T. & Orban, G.A. (2002). Extracting 3D from motion: Differences in human and monkey intraparietal cortex. Science 298, 413415.Google Scholar
Vogt, B.A. & Laureys, S. (2005). Posterior cingulate, precuneal and retrosplenial cortices: Cytology and components of the nerual network correlates of consciouness. In Progress in Brain Research, ed. Laureys & S., Vol. 150, pp. 205217. New York: Elsevier.
Vogt, B.A. (2005). Pain and emotion interactions in subregions of the cingulate gyrus. Nature Reviews Neuroscience 6, 533544.Google Scholar
Vogt, B.A., Vogt, L. & Laureys, S. (2006). Cytology and functionally correlated circuits of human posterior cingulate areas. Neuroimage 29, 452466.Google Scholar
Zeki, S., Watson, J.D., Lueck, C.J., Friston, K.J., Kennard, C. & Frackowiak, R.S. (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience 11, 641649.Google Scholar