Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T04:37:17.489Z Has data issue: false hasContentIssue false

Perspective: New genetic tools for studying retinal development and disease

Published online by Cambridge University Press:  06 December 2005

BRETT A. SCHWEERS
Affiliation:
Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis
MICHAEL A. DYER
Affiliation:
Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis

Abstract

The use of knock-out and transgenic mice has been instrumental for advancing our understanding of retinal development and disease. In this perspective, we review existing genetic approaches to studying retinal development and present a series of new genetic tools that complement the use of standard knock-out and transgenic mice. Particular emphasis is placed on elucidating cell-autonomous and non-cell-autonomous roles of genes important for retinal development and disease in vivo. In addition, a series of gene-swapping vectors can be used to elucidate the function of proteins that regulate key processes in retinal development and a wide variety of retinopathies.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belliveau, M.J. & Cepko, C.L. (1999). Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. Development 126, 555566.Google Scholar
Belliveau, M.J., Young, T.L., & Cepko, C.L. (2000). Late retinal progenitor cells show intrinsic limitations in the production of cell types and the kinetics of opsin synthesis. Journal of Neuroscience 20, 22472254.Google Scholar
Cepko, C.L., Austin, C.P., Yang, X., Alexiades, M., & Ezzeddine, D. (1996). Cell fate determination in the vertebrate retina. Proceedings of the National Academy of Sciences of the U.S.A. 93, 589595.CrossRefGoogle Scholar
Clarke, A.R., Maandag, E.R., van Roon, M., van der Lugt, N.M., van der Valk, M., Hooper, M.L., Berns, A., & te Riele, H. (1992). Requirement for a functional Rb-1 gene in murine development. Nature 359, 328330.CrossRefGoogle Scholar
Dakubo, G.D. & Wallace, V.A. (2004). Hedgehogs and retinal ganglion cells: Organizers of the mammalian retina. Neuroreport 15, 479482.CrossRefGoogle Scholar
Dakubo, G.D., Wang, Y.P., Mazerolle, C., Campsall, K., McMahon, A.P., & Wallace, V.A. (2003). Retinal ganglion cell-derived sonic hedgehog signaling is required for optic disc and stalk neuroepithelial cell development. Development 130, 29672980.Google Scholar
de Bruin, A., Wu, L., Saavedra, H.I., Wilson, P., Yang, Y., Rosol, T.J., Weinstein, M., Robinson, M.L., & Leone, G. (2003). Rb function in extraembryonic lineages suppresses apoptosis in the CNS of Rb-deficient mice. Proceedings of the National Academy of Sciences of the U.S.A. 100, 65466551.CrossRefGoogle Scholar
Donovan, S.L. & Dyer, M.A. (2004). Developmental defects in Rb-deficient retinae. Vision Research 44, 33233333.CrossRefGoogle Scholar
Donovan, S.L. & Dyer, M.A. (2005). Regulation of proliferation in the developing central nervous system. Seminars in Cell and Developmental Biology 16, 407421.CrossRefGoogle Scholar
Dryja, T.P., Friend, S., & Weinberg, R.A. (1986). Genetic sequences that predispose to retinoblastoma and osteosarcoma. Symposium on Fundamental Cancer Research 39, 115119.Google Scholar
Dyer, M.A. (2003). Regulation of proliferation, cell fate specification and differentiation by the homeodomain proteins Prox1, Six3, and Chx10 in the developing retina. Cell Cycle 2, 350357.Google Scholar
Dyer, M.A. (2004). Mouse models of childhood cancer of the nervous system. Journal of Clinical Pathology 57, 561576.CrossRefGoogle Scholar
Dyer, M.A. & Bremner, R. (2005). The search for the retinoblastoma cell of origin. Nature Reviews Cancer 5, 91101.CrossRefGoogle Scholar
Dyer, M.A. & Cepko, C.L. (2000). Control of Muller glial cell proliferation and activation following retinal injury. Nature Neuroscience 3, 873880.Google Scholar
Dyer, M.A. & Cepko, C.L. (2001). Regulating proliferation during retinal development. Nature Reviews Neuroscience 2, 333342.CrossRefGoogle Scholar
Friend, S.H., Bernards, R., Rogelj, S., Weinberg, R.A., Rapaport, J.M., Albert, D.M., & Dryja, T.P. (1986). A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643646.CrossRefGoogle Scholar
Harbour, J.W. (2001). Molecular basis of low-penetrance retinoblastoma. Archives of Ophthalmology 119, 16991704.CrossRefGoogle Scholar
Harbour, J.W. & Dean, D.C. (2000). Chromatin remodeling and Rb activity. Current Opinion in Cell Biology 12, 685689.CrossRefGoogle Scholar
Harbour, J.W. & Dean, D.C. (2001). Corepressors and retinoblastoma protein function. Current Topics in Microbiology and Immunology 254, 137144.CrossRefGoogle Scholar
Harbour, J.W., Luo, R.X., Dei Santi, A., Postigo, A.A., & Dean, D.C. (1999). Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859869.CrossRefGoogle Scholar
Jacks, T., Fazeli, A., Schmitt, E.M., Bronson, R.T., Goodell, M.A., & Weinberg, R.A. (1992). Effects of an Rb mutation in the mouse. Nature 359, 295300.CrossRefGoogle Scholar
Jeon, C.J., Strettoi, E., & Masland, R.H. (1998). The major cell populations of the mouse retina. Journal of Neuroscience 18, 89368946.Google Scholar
Lee, E.Y., Chang, C.Y., Hu, N., Wang, Y.C., Lai, C.C., Herrup, K., Lee, W.H., & Bradley, A. (1992). Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359, 288294.CrossRefGoogle Scholar
Lobe, C.G., Koop, K.E., Kreppner, W., Lomeli, H., Gertsenstein, M., & Nagy, A. (1999). Z/AP, a double reporter for cre-mediated recombination. Developmental Biology 208, 281292.CrossRefGoogle Scholar
Ma, C., Papermaster, D., & Cepko, C.L. (1998). A unique pattern of photoreceptor degeneration in cyclin D1 mutant mice. Proceedings of the National Academy of Sciences of the U.S.A. 95, 99389943.CrossRefGoogle Scholar
Maandag, E.C., van der Valk, M., Vlaar, M., Feltkamp, C., O'Brien, J., van Roon, M., van der Lugt, N., Berns, A., & te Riele, H. (1994). Developmental rescue of an embryonic-lethal mutation in the retinoblastoma gene in chimeric mice. EMBO Journal 13, 42604268.Google Scholar
MacNeil, M.A., Heussy, J.K., Dacheux, R.F., Raviola, E., & Masland, R.H. (1999). The shapes and numbers of amacrine cells: Matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. Journal of Comparative Neurology 413, 305326.3.0.CO;2-E>CrossRefGoogle Scholar
MacNeil, M.A. & Masland, R.H. (1998). Extreme diversity among amacrine cells: Implications for function. Neuron 20, 971982.CrossRefGoogle Scholar
Matsuda, T. & Cepko, C.L. (2004). Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proceedings of the National Academy of Sciences of the U.S.A. 101, 1622.CrossRefGoogle Scholar
Novak, A., Guo, C., Yang, W., Nagy, A., & Lobe, C.G. (2000). Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147155.3.0.CO;2-G>CrossRefGoogle Scholar
Turner, D.L. & Cepko, C.L. (1987). A common progenitor for neurons and glia persists in rat retina late in development. Nature 328, 131136.CrossRefGoogle Scholar
Turner, D.L., Snyder, E.Y., & Cepko, C.L. (1990). Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4, 833845.CrossRefGoogle Scholar
Vooijs, M., te Riele, H., van der Valk, M., & Berns, A. (2002). Tumor formation in mice with somatic inactivation of the retinoblastoma gene in interphotoreceptor retinol binding protein-expressing cells. Oncogene 21, 46354645.CrossRefGoogle Scholar
Wang, Y.P., Dakubo, G., Howley, P., Campsall, K.D., Mazarolle, C.J., Shiga, S.A., Lewis, P.M., McMahon, A.P., & Wallace, V.A. (2002). Development of normal retinal organization depends on Sonic hedgehog signaling from ganglion cells. Nature Neuroscience 5, 831832.Google Scholar
Williams, B.O., Schmitt, E.M., Remington, L., Bronson, R.T., Albert, D.M., Weinberg, R.A., & Jacks, T. (1994). Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. EMBO Journal 13, 42514259.Google Scholar
Wu, L., de Bruin, A., Saavedra, H.I., Starovic, M., Trimboli, A., Yang, Y., Opavska, J., Wilson, P., Thompson, J.C., Ostrowski, M.C., Rosol, T.J., Woollett, L.A., Weinstein, M., Cross, J.C., Robinson, M.L., & Leone, G. (2003). Extra-embryonic function of Rb is essential for embryonic development and viability. Nature 421, 942947.CrossRefGoogle Scholar
Young, T.L. & Cepko, C.L. (2004). A role for ligand-gated ion channels in rod photoreceptor development. Neuron 41, 867879.CrossRefGoogle Scholar
Zhang, J., Gray, J., Wu, L., Leone, G., Rowan, S., Cepko, C.L., Zhu, X., Craft, C.M., & Dyer, M.A. (2004a). Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nature Genetics 36, 351360.Google Scholar
Zhang, J., Schweers, B., & Dyer, M.A. (2004b). The first knockout mouse model of retinoblastoma. Cell Cycle 3, 952959.Google Scholar