Article contents
Organization of individual cortical axons projecting from area V1 (area 17) to V2 (area 18) in the macaque monkey
Published online by Cambridge University Press: 02 June 2009
Abstract
The present study uses the anterograde tracer, Phaseolus vulgaris-leucoagglutinin (PHA-L), to investigate the detailed morphology of individual axons projecting from area V1 to prestriate area V2. Observations are derived from serial reconstructions of 45 axons. Axons are found to differ both in laminar distribution and in arbor size. The majority (25/45; 56%) terminate in the upper half of layer 4 and the lower part of layer 3. Terminal clusters typically measure about 200 μm in diameter (dimensions are uncorrected for shrinkage), and are either in one, two, or occasionally three patches. Patches are separated by 200−500 μm. Of these 25 axons, four also have minor collaterals to layer 5. Of the remaining 20 axons in our sample, eight have one or two terminal arbors (about 200 μm in diameter) mainly in layer 3; another eight have terminations, organized as a single field (about 350 μm in diameter), within layer 4; and four axons have much larger terminal fields (1.0−1.2 mm × 0.3 mm), in layers 3 nd 4. These morphological differences might constitute a gradient or, alternately, indicate distinct subgroups within the striate efferent population. Large terminal fields are asymmetrical, with their long axis oriented in an anterior-posterior fashion toward the depth of the lunate sulcus. Axons with two terminal arbors have a similar bias. As this arrangement is approximately perpendicular to the border of V1, we suggest that striate axons may be extended preferentially along the length of the stripelike compartments in V2. These compartments are also arrayed perpendicular to the border between areas V1 and V2. Reconstruction of small groups of 2–4 convergent axons demonstrates that axons with different morphology (i.e. large or small terminal fields) can occur within the same projection focus. Terminal arbors belonging to different axons can overlap, but tend not to be superimposed exactly.
Keywords
- Type
- Research Articles
- Information
- Copyright
- Copyright © Cambridge University Press 1990
References
- 66
- Cited by