Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-15T07:30:00.109Z Has data issue: false hasContentIssue false

On the distribution of gamma cells in the cat retina

Published online by Cambridge University Press:  02 June 2009

J.J. Stein
Affiliation:
Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence
D.M. Berson
Affiliation:
Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence

Abstract

Ganglion cells of the cat retina that are neither alpha nor beta cells are often lumped for convenience into a single anatomical group—the gamma cells (Boycott & Wässle, 1974; Stone, 1983; Wässle & Boycott, 1991). Defined in this way, gamma cells are the morphological counterpart to the physiological W-cell class, which includes all ganglion cells that are neither Y (alpha) nor X (beta) cells. We have estimated the retinal distribution of gamma cells by using retrograde transport to label ganglion cells innervating the superior colliculus and by assuming that these included virtually all gamma cells and no beta cells. We excluded labeled alpha cells on the basis of soma size. Our data suggest that gamma cells represent just under half of the ganglion cells in most of the nasal retina, but only about a third of those in the area centralis and temporal retina. Gamma cells do not appear to be more highly concentrated in the nasal visual streak than are other ganglion cells. In the temporal retina, gamma cells with crossed projections to the brain are apparently at least twice as common as those with uncrossed projections.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behan, M. (1982). A quantitative analysis of the ipsilateral retinocollicular projection in the cat: An EM degeneration and EM autoradiographic study. Journal of Comparative Neurology 206, 253258.CrossRefGoogle Scholar
Berson, D. & Stein, J.J. (1995). Retinotopic organization of the superior colliculus in relation to the retinal distribution of afferent ganglion cells. Visual Neuroscience 12, 671686.CrossRefGoogle Scholar
Boycott, B.B. & Wassle, H. (1974). The morphological types of ganglion cells of the domestic cat's retina. Journal of Physiology (London) 240, 397419.CrossRefGoogle ScholarPubMed
Brening, R.K. & Rodieck, R.W. (1986). Morphology of the cat ganglion cells that project to the superior colliculus. Investigative Ophthalmology and Visual Science (Suppl.) 27, 223.Google Scholar
Cleland, B.G. & Levick, W.R. (1974 a). Brisk and sluggish concentrically organized ganglion cells in the cat's retina. Journal of Physiology (London) 240, 421456.CrossRefGoogle ScholarPubMed
Cleland, B.G. & Levick, W.R. (1974 b). Properties of rarely encountered types of ganglion cells in the cat's retina and an overall classification. Journal of Physiology (London) 240, 457492.CrossRefGoogle Scholar
Cooper, M.L. & Pettigrew, J.D. (1979). The decussation of the retinothalamic pathway in the cat, with a note on the major meridians of the cat's eye. Journal of Comparative Neurology 187, 285312.CrossRefGoogle ScholarPubMed
Dacey, D.M. (1989). Monoamine-accumulating ganglion cell type of the cat's retina. Journal of Comparative Neurology 288, 5980.CrossRefGoogle ScholarPubMed
Dacey, D.M. (1993). The mosaic of midget ganglion cells in the human retina. Journal of Neuroscience 13, 53345355.CrossRefGoogle ScholarPubMed
Distler, C. & Hoffmann, K.-P. (1989). The pupillary light reflex in normal and innate microstrabismic cats. II. Retinal and cortical input to the nucleus praetectalis olivaris. Visual Neuroscience 3, 139153.CrossRefGoogle Scholar
Farmer, S.G. & Rodieck, R.W. (1982). Ganglion cells of the cat accessory optic system: Morphology and retinal topography. Journal of Comparative Neurology 205, 190198.CrossRefGoogle ScholarPubMed
Freeman, B. & Singer, W. (1983). Direct and indirect visual inputs to superficial layers of cat superior colliculus: A current source-density analysis of electrically evoked potentials. Journal of Neurophysiology 49, 10751091.CrossRefGoogle ScholarPubMed
Fukuda, Y. & Stone, J. (1974). Retinal distribution and central projections of Y-, X-, and W-cells of the cat's retina. Journal of Neuro-physiology 37, 749772.CrossRefGoogle Scholar
Hoffmann, K.-P. (1973). Conduction velocity in pathways from retina to superior colliculus in the cat: A correlation with receptive-field properties. Journal of Neurophysiology 36, 409424.CrossRefGoogle Scholar
Hoffmann, K.-P. & Stone, J. (1985). Retinal input to the nucleus of the optic tract of the cat assessed by antidromic activation of ganglion cells. Experimental Brain Research 59, 395403.CrossRefGoogle Scholar
Hughes, A. (1981). Population magnitudes and distribution of the major modal classes of cat retinal ganglion cells as estimated from HRP filling and a systematic survey of the soma diameter spectra for classical neurones. Journal of Comparative Neurology 197, 303340.CrossRefGoogle Scholar
Hughes, A. (1985). New perspectives in retinal organisation. In Progress in Retinal Research (Vol. 4), ed. Osborne, N.N. & Chader, G.J. pp. 243313. Oxford: Pergamon Press.Google Scholar
Hustler, J.J., White, C.A. & Chalupa, L.M. (1993). Neuropeptide Y immunoreactivity identifies a group of gamma-type retinal ganglion cells in the cat. Journal of Comparative Neurology 336, 468480.Google Scholar
Illing, R.-B. & Wassle, H. (1981). The retinal projection to the thalamus in the cat: A quantitative investigation and a comparison with the retinotectal pathway. Journal of Comparative Neurology 202, 265285.CrossRefGoogle Scholar
Itoh, K., Conley, M. & Diamond, I.T. (1981). Different distributions of large and small ganglion cells in the cat after HRP injections of single layers of the lateral geniculate body and the superior colliculus. Brain Research 207, 147152.CrossRefGoogle ScholarPubMed
Kanaseki, T. & Sprague, J.M. (1974). Anatomical organization of pretectal nuclei and tectal laminae in the cat. Journal of Comparative Neurology 158, 319338.CrossRefGoogle ScholarPubMed
Kelly, J.P. & Gilbert, C.D. (1975). The projections of different morphological types of ganglion cells in the cat retina. Journal of Comparative Neurology 163, 6580.CrossRefGoogle ScholarPubMed
Kirk, D.L., Levick, W.R. & Cleland, B.C. (1976). The crossed or uncrossed destination of axons of sluggish concentric and non-concentric cat retinal ganglion cells, with an overall synthesis of the visual field representation. Vision Research 16, 233236.CrossRefGoogle ScholarPubMed
Koontz, M.A., Rodieck, R.W. & Farmer, S.G. (1985). The retinal projection to the cat pretectum. Journal of Comparative Neurology 236, 4259.CrossRefGoogle Scholar
Leventhal, A.G., Keens, J. & Tork, I. (1980). The afferent ganglion cells and cortical projections of the retinal recipient zone (RRZ) of the cat's ‘pulvinar complex’. Journal of Comparative Neurology 194, 535554.CrossRefGoogle ScholarPubMed
Leventhal, A.G., Rodieck, R.W. & Dreher, B. (1985). Central projections of cat retinal ganglion cells. Journal of Comparative Neurology 237, 216226.CrossRefGoogle ScholarPubMed
Magalhaes-Castro, H.H., Murata, L.A. & Magalhaes-Castro, D. (1975). Cat retinal ganglion cell projections to the superior colliculus as shown by the horseradish peroxidase method. Experimental Brain Research 25, 541549.Google Scholar
Pu, M. & Berson, D.M. (1991 a). Morphology of ganglion cells innervating the medial interlaminar nucleus of the lateral geniculate body. Society for Neuroscience Abstracts 17, 709.Google Scholar
Pu, M. & Berson, D.M. (1991 b). Morphology of retinal W-cells innervating the cat's superior colliculus. Investigative Ophthalmology and Visual Science (Suppl.) 32, 1133.Google Scholar
Pu, M., Berson, D.M. & Pan, T. (1994). Structure and function of retinal ganglion cells innervating the cat's geniculate wing: An in vitro study. Journal of Neuroscience 14, 43384358.CrossRefGoogle Scholar
Rosenquist, A.C. & Palmer, L.A. (1971). Visual receptive field properties of cells of the superior colliculus after cortical lesions in the cat. Experimental Neurology 33, 629652.CrossRefGoogle ScholarPubMed
Rowe, M.H. & Dreher, B. (1982). Retinal W-cell projections to the medial interlaminar nucleus in the cat: Implications for ganglion cell classification. Journal of Comparative Neurology 204, 117133.CrossRefGoogle Scholar
Rowe, M.H. & Stone, J. (1976). Properties of ganglion cells in the visual streak of the cat's retina. Journal of Comparative Neurology 169, 99126.CrossRefGoogle ScholarPubMed
Rowe, M.H. & Stone, J. (1977). Naming of neurons: Classification and naming of cat retinal ganglion cells. Brain, Behavior, and Evolution 14, 185216.Google ScholarPubMed
Rowe, M.H. & Stone, J. (1980). The interpretation of variation in the classification of nerve cells. Brain, Behavior, and Evolution 17, 123151.Google ScholarPubMed
Sawai, H., Fukuda, Y. & Wakakuwa, K. (1985). Axonal projections of X-cells to the superior colliculus and to the nucleus of the optic tract in cats. Brain Research 341, 16.CrossRefGoogle Scholar
Schmued, L.C., Swanson, L.W. & Sawchenko, P.E. (1982). Some fluorescent counterstains for neuroanatomical studies. Journal of Histochemistry and Cytochemistry 30, 123128.CrossRefGoogle ScholarPubMed
Schoppmann, A. & Hoffmann, K.-P. (1979). A comparison of visual responses in two pretectal nuclei and in the superior colliculus of the cat. Experimental Brain Research 35, 495510.CrossRefGoogle ScholarPubMed
Sherman, S.M. (1977). The effect of superior colliculus lesions upon the visual fields of cats with cortical ablations. Journal of Comparative Neurology 172, 211229.CrossRefGoogle ScholarPubMed
Stanford, L.R. (1987). W-cells in the cat retina: Correlated morphological and physiological evidence for two distinct classes. Journal of Neurophysiology 57, 218244.CrossRefGoogle ScholarPubMed
Stein, J.J., Johnson, S.A. & Berson, D.M. (1994). Distribution and coverage of beta cells in the cat retina. Society for Neuroscience Abstracts 20, 1576.Google Scholar
Sterling, P. (1973). Quantitative mapping with the electron microscope: Retinal terminals in the superior colliculus. Brain Research 54, 347354.CrossRefGoogle ScholarPubMed
Stone, J. (1966). The naso-temporal division of the cat's retina. Journal of Comparative Neurology 126, 585600.Google ScholarPubMed
Stone, J. (1978). The number and distribution of ganglion cells in the cat's retina. Journal of Comparative Neurology 180, 753771.CrossRefGoogle ScholarPubMed
Stone, J. (1983). Parallel Processing in the Visual System: The Classification of Retinal Ganglion Cells and Its Impact on the Neurobiology of Vision. New York: Plenum.CrossRefGoogle Scholar
Stone, J. & Clarke, R. (1980). Correlation between soma size and dendritic morphology in cat retinal ganglion cells: Evidence of further variation in the gamma-cell class. Journal of Comparative Neurology 192, 211217.CrossRefGoogle ScholarPubMed
Stone, J. & Fukuda, Y. (1974). The naso-temporal division of the cat's retina re-examined in terms of W-, X-, and Y-cells. Journal of Comparative Neurology 155, 377394.CrossRefGoogle Scholar
Stone, J. & Holländer, H. (1971). Optic nerve axon diameter measured in the cat retina: Some functional considerations. Experimental Brain Research 13, 498503.CrossRefGoogle ScholarPubMed
Stone, J. & Keens, J. (1980). Distribution of small and medium-sized ganglion cells in the cat's retina. Journal of Comparative Neurology 192, 235246.CrossRefGoogle ScholarPubMed
Wässle, H. & Boycott, B.B. (1991). Functional architecture of the mammalian retina. Physiological Reviews 71, 447480.CrossRefGoogle ScholarPubMed
Wässle, H., Chun, M.H. & Müller, F. (1987). Amacrine cells in the ganglion cell layer of the cat retina. Journal of Comparative Neurology 265, 391408.CrossRefGoogle ScholarPubMed
Wässle, H., Levick, W.R. & Cleland, B.C. (1975). The distribution of the alpha type of ganglion cells in the cat's retina. Journal of Comparative Neurology 159, 419437.CrossRefGoogle ScholarPubMed
Wässle, H. & Illing, R.-B. (1980). The retinal projection to the superior colliculus in the cat: A quantitative study with HRP. Journal of Comparative Neurology 190, 333356.CrossRefGoogle Scholar
Williams, R.W. & Chalupa, L.M. (1983). An analysis of axon caliber within the optic nerve of the cat: Evidence of size groupings and regional organization. Journal of Neuroscience 3, 15541564.CrossRefGoogle ScholarPubMed
Williams, R.W., Cavada, C. & Reinoso-Suarez, F. (1993). Rapid evolution of the visual system: A cellular assay of the retina and dorsal lateral geniculate nucleus of the Spanish wildcat and the domestic cat. Journal of Neuroscience 13, 208228.CrossRefGoogle ScholarPubMed
Wingate, J.T., Fitzgibbon, T. & Thompson, I.D. (1992). Lucifer Yellow, retrograde tracers, and fractal analysis characterise adult ferret retinal ganglion cells. Journal of Comparative Neurology 323, 449474.CrossRefGoogle ScholarPubMed
Wong, R.O.L. & Hughes, A. (1987). The morphology, number, and distribution of a large population of confirmed displaced amacrine cells in the adult cat retina. Journal of Comparative Neurology 255, 159177.CrossRefGoogle ScholarPubMed