Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T00:26:44.679Z Has data issue: false hasContentIssue false

Neural elements in the pineal complex of the frog, Rana esculenta, II: GABA-immunoreactive neurons and FMRFamide-immunoreactive efferent axons

Published online by Cambridge University Press:  02 June 2009

P. Ekström
Affiliation:
Laboratory of Molecular Neuroanatomy, Department of Zoology, University of Lund, Lund, Sweden.
T. östholm
Affiliation:
Laboratory of Molecular Neuroanatomy, Department of Zoology, University of Lund, Lund, Sweden.
H. Meissl
Affiliation:
Max-Planck-Institute for Physiological and Clinical Research, W.G. Kerckhoff Institute, Bad Nauhein, FRG.
A. Bruun
Affiliation:
Department of Ophthalmology, University of Lund, Lund, Sweden.
J.G. Richards
Affiliation:
Pharmaceutical Research Department, F. Hoffmann-LaRoche & Co., Ltd., Basel, Switzerland.
H. Möhler
Affiliation:
Pharmaceutical Research Department, F. Hoffmann-LaRoche & Co., Ltd., Basel, Switzerland.

Abstract

The photosensory pineal complex of anurans comprises an extracranial part, the frontal organ, and an intracranial part, the pineal organ proper. Although the pineal organ functions mainly as a luminosity detector, the frontal organ monitor the relative proportions of short and intermediate/long wavelengths in the ambient illumination. The major pathway of information processing in the pineal and frontal organs is the photoreceptor to ganglion cell synapse. It is not known whether interneurons form part of the neural circuitry. In the present study, we demonstrate GABA-immunoreactive (GABA-IR) neurons in the pineal and frontal organs of the frog, Rana esculenta. No GABA-IR axons were observed in the pineal nerve between the frontal and pineal organs, or in the pineal tract that connects the pineal complex with the brain. The GABA-IR neurons differed in morphology from centrally projecting neurons visualized by retrograde labeling with horseradish peroxidase. Thus, we suggest that the GABA-IR neurons in the pineal and frontal organs represent local interneurons.

Axons of central origin, immunoreactive with a sensitive antiserum against the tetrapeptide Phe-Met-Phe-Arg-NH2 (FMRFamide), were observed in the intracranial portion of the photosensory pineal organ. The immunoreactive axons enter the caudal pole of the pineal organ via the posterior commissure. The largest density of axons was observed in the caudal part, while fewer axons were detected in the rostral portion. The uneven distribution of the FMRFamide-immunoreactive axons may be related to the distribution of different types of intrapineal neurons. FMRFamide-immunoreactive varicose axons were observed in the extracranial frontal organ. A central innervation of the pineal organ, previously known exclusively from amniotes, is probably not per se linked with the evolutionary transition of the pineal organ from a directly photosensory organ to a neuroendocrine organ. It could rather represent a centrifugal input to a sensory system which has been retained when the directly sensory functions have changed, during phylogency, to neuroendocrine functions.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agardh, E., Bruun, A., Ehinger, B., Ekström, P., Van Veen, Th. & Wu, J.-Y. (1987). Gamma-aminobutyric acid- and glutamic acid decarboxylase-immunoreactive neurons in the retina of different vertebrates. Journal of Comparative Neurology 258, 622630.CrossRefGoogle ScholarPubMed
Bargmann, W. (1943). Die Epiphysis cerebri. In Lehrbuch der Vergleichenden Mikroskopischen Anatomie des Menschen, Vol. VI/4, ed. von Möllendorf, W., pp. 309502. Berlin: Springer-Verlag.Google Scholar
Boel, E., Schwartz, T.W., Norris, K.E. & Fm, N.P. (1984). A cDNA encoding a small common precursor for human pancreatic polypeptide and pancreatic icosapeptide. EMBO Journal 3, 909912.Google Scholar
Böttger, W.V. & Böttger, E.-M. (1973). Degenerationsstudien am Nervus pinealis von Rana esculenta L. nach stirnorgannaher und-ferner Durchtrennung. Zeitschrift für Zellforschung 136, 365391.CrossRefGoogle Scholar
Collin, J.-P. (1971). Differentiation and regression of the cells of the sensory line in the epiphysis cerebri. In The Pineal Gland, ed. Wolstenholme, G.E.W. &Knight, J. pp. 79120. Edinburgh, England: Churchill Livingstone.Google Scholar
Dodt, E. (1963). Photosensitivity of the pineal organ in the teleost, Salmo irideus (Gibbons). Experienlia 19, 642643.CrossRefGoogle ScholarPubMed
Dodt, E. (1973). The parietal eye (pineal and parietal organs) of lower vertebrates. In Handbook of Sensory Physiology, Vol. VII/3B, ed. Jung, R., pp. 113140. New York, Berlin, Heidelberg: Springer- Verlag.Google Scholar
Dodt, E. &Heerd, E. (1962). Mode of action of pineal nerve fibers in frogs. Journal of Neurophysiology 25, 405429.CrossRefGoogle ScholarPubMed
Dodt, E. &Jacobson, M. (1963). Photosensitivity of a localized region of the frog diencephalon. Journal of Neurophysiology 26, 752758.Google Scholar
Ebberink, R.H.M., Price, D.A., Van Loenhout, H., Doble, K.E., Riehm, J.P., Geraerts, W.P.M. &Greenberg, M.J. (1987). The brain of Lymnaea contains a family of FMRFamide-like peptides. Peprides 8, 515522.Google ScholarPubMed
Ekström, P. &Korf, H.W. (1986a). Putative cholinergic elements in the photosensory pineal organ and retina of a teleost, Phoxinus phoxinus L. (Cyprinidae). Distribution of choline acetyltransferase immunoreactivity, acetylcholinesterase-positive elements, and pinealofugally projecting neurons. Cell and Tissue Research 246, 321329.CrossRefGoogle ScholarPubMed
Eksmöm, P. &Korf, H.W. (1986b). Substance P-like-immunoreactive neurons in the photosensory pineal organ of the rainbow trout, Salmo gairdneri Richardson (Teleostei). Cell and Tissue Research 246, 359364.Google Scholar
Ekström, P. &Meissl, H. (1988). Intracellular staining of physiologically identified photoreceptor cells and hyperpolarizing interneurons in the teleost pineal organ. Neuroscience 25, 10611070.Google Scholar
Ekstrom, P. &Meissl, H. (1990). Neural elements in the pineal complex of the frog, Rana esculenta, I: Centrally projecting neurons. Visual Neuroscience 4, 389397.Google Scholar
Ekström, P., van Veen, Th., Bruun, A. &Ehinger, B. (1987). GABA-immunoreactive neurons in the photosensory pineal organ of the rainbow trout form two distinct neuronal populations. Cell and Tissue Research 250, 8792.Google Scholar
Ekström, P., Honkanen, T. &Ebbesson, S.O.E. (1988). FMRFamidelike immunoreactive neurons of the nervus terminalis of teleosts innervate both retina and pineal organ. Brain Research 460, 6875.CrossRefGoogle ScholarPubMed
Eldred, W.D. &Nolte, J. (1978). Pineal photoreceptors: evidence for a vertebrate visual pigment with two physiologically active states. Vision Research 18, 2932.CrossRefGoogle ScholarPubMed
Eldred, W.D. &Nolte, J. (1981). Multiple classes of photoreceptors and neurons in the frontal organ of Rana pipiens. Journal of Comparative Neurology 203, 269295.Google Scholar
Eldred, W.D., Finger, T.E. &Nolte, J. (1980). Central projections of the frontal organ of Rana pipiens, as demonstrated by the anterograde transport of horseradish peroxidase. Cell and Tissue Research 211, 215222.CrossRefGoogle ScholarPubMed
Engbretson, G.A. &Battelle, B.A. (1985). Identification of putative neurotransmitters in the lizard parietal eye. Investigative Ophthalmology and Visual Science 26, 670678.Google ScholarPubMed
Engbretson, G.A. &Lent, C.M. (1976). Parietal eye of the lizard: neuronal photoresponses and feedback from the pineal gland. Proceedings of the National Academy of Sciences of the U.S.A. 73, 654657.Google Scholar
Hamasaki, D.I. (1970). Interaction of excitation and inhibition in the Stirnorgan of the frog. Vision Research 10, 307316.CrossRefGoogle ScholarPubMed
Häring, P., Stähli, C., Schoch, P., Takacs, B., Staehelin, T. &Möhler, H. (1985). Monoclonal antibodies reveal ructural homogeneity of γ-aminobutyric acid/benzodiazepine receptors in different brain areas. Proceedings of the National Academy of Sciences of the U.S.A. 82, 48374841.Google Scholar
Kemali, M. &De Santis, A. (1983). The extracranial portion of the pineal complex of the frog (frontal organ) is connected to the pineal, the hypothalamus, the brain stem, and the retina. Experimental Brain Research 53, 193196.Google Scholar
Kemali, M. &Lazar, G. (1985). Cobalt injected into the right and left fasciculi retroflexes clarifies the organization of this pathway. Journal of Comparative Neurology 233, 111.CrossRefGoogle ScholarPubMed
Klein, D., Weller, J. &Moore, R. (1971). Melatonin metabolism: neural regulation of pineal serotonin: acetyl coenzyme A N-acetyl transferase activity. Proceedings of the National Academy of Sciences of the U.S.A. 68, 31073110.Google Scholar
Korf, H.W. (1974). Acetylcholinesterase-positive neurons in the pineal and parapineal organs of the rainbow trout, Salmo gairdneri (with special reference to the pineal tract). Cell and Tissue Research 155, 475489.Google Scholar
Korf, H.-W. &Møller, M. (1984). The innervation of the mammalian pineal gland with special reference to central pinealopetal projections. Pineal Research Reviews 2, 4186.Google Scholar
Korf, H.-W. &Oksche, A. (1986). In Vertebrate Endocrinology: Fundamentals and Biomedical Implications, ed. Pang, P.K.T. &Schreibman, M.P., pp. 105145. Orlando, Florida: Academic Press.Google Scholar
Korf, H.-W. &Wagner, U. (1980). Evidence for a nervous connection between the brain and the pineal organ in the guinea pig. Cell and Tissue Research 209, 505510.Google Scholar
Korf, H.-W. &Wagner, U. (1981). Nervous connections of the parietal eye in adult Lacerta s. sicula Rafinesque as demonstrated by anterograde and retrograde transport of horseradish peroxidase. Cell and Tissue Research 219, 567583.Google Scholar
Korf, H.-W., Zimmerman, N.H. &Oksche, A. (1982). Intrinsic neurons and neural connections of the pineal organ of the house sparrow, Passer domesticus, as revealed by anterograde and retrograde transport of horseradish peroxidase. Cell and Tissue Research 222, 243260.CrossRefGoogle ScholarPubMed
Maxwell, M.H. (1978). Two rapid and simple methods used for the removal of resins from 1.0-μm-thick epoxy sections. Journal of Microscopy 112, 253255.CrossRefGoogle ScholarPubMed
Meissl, H. (1986). Photoneurophysiology of pinealocytes. In Pineal and Retinal Relationships, ed. Klein, D.C. &O'Brien, P.J., pp. 3345. New York: Academic Press.Google Scholar
Meissl, H. &Dodt, E. (1981). Comparative physiology of pineal photoreceptor organs. In The Pineal Organ: Photobiology-Biochronometry-Endocrinology, ed. Oksche, A. &PÉvet, P., pp. 6180. Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
Meissl, H. &George, S. (1984). Electrophysiological studies on neuronal transmission in the frog's photosensory pineal organ. The effect of amino acids and biogenic amines. Vision Research 24, 17271734.Google Scholar
Meissl, H. &George, S. (1985). Effect of GABA and its antagonists, bicuculline and picrotoxin, on nerve cell discharges of the photosensory pineal organ of the frog, Rana esculenta. Brain Research 332, 3946.Google Scholar
Morita, Y. (1971). Post-tetanic activity changes of the frog's neurosensory pineal end vesicle (Stirnorgan). Pflügers Archiv 328, 135144.Google Scholar
Neary, T.J. &Nortcutt, R.G. (1983). Nuclear organization of the bullfrog diencephalon. Journal of Comparative Neurology 213, 262278.Google Scholar
Oksche, A. (1971). Sensory and grandular elements of the pineal organ. In The Pineal Gland, ed. Wolstenholme, G.E.W. &Knight, J. pp. 127146. Edinburgh, England: Churchill Livingstone.Google Scholar
östholm, T., Ekström, P., Bruun, A. &van Veen, Th. (1988). Temporal disparity in pineal and retinal ontogeny. Developmental Brain Research 42, 113.CrossRefGoogle Scholar
Paul, E., Hartwig, H.-G. &Okscre, A. (1971). Neurone und zentralnervöse Verbindungen des Pinealorgans der Anuren. Zeitschrift für Zellforschung 112, 466493.CrossRefGoogle Scholar
Richards, G., Möhler, H. &Haefely, W. (1986). Mapping benzodiazepine receptors in the CNS by radiohistochemistry and immunohistochemistry. In Neurohistochemistry: Modern Methods and Applications, pp. 629677, New York: Alan R. Liss, Inc.Google Scholar
Shiotani, Y., Yamano, M., Shiosaka, S., Emson, P.C., Hillyard, C.J., Girgis, S. &Macintyre, I. (1986). Distribution and origins of substance P (SP)-, calcitonin gene-related peptide (CGRP)-, vasoactive intestinal polypeptide (VIP)-, and neuropeptide Y (NPY)-containing nerve fibers in the pineal gland of gerbils. Neuroscience Letters 70, 187192.CrossRefGoogle ScholarPubMed
Studniċka, A.K. (1905). Die Parietalorgane. In Lehrbuch der vergleichende Anatomie der Wirbeltiere, Vol. 5, ed. Oppel, A., pp. 1254. Jena: Springer-Verlag.Google Scholar
Triepel, J. &Grimmelikhuuzen, C.J.P. (1984). A critical examination of the occurrence of FMRFamide immunoreactivity in the brain of guinea pig and rat. Histochemistry 80, 6371.Google Scholar
van Leeuwen, F. (1986). Pitfalls in immunocytochemistry with special reference to the specificity problems in the localization of neuropeptides. American Journal of Anatomy 175, 363377.Google Scholar
Vigh, B. &Vigh-Teichmann, I. (1986). Three types of photoreceptors in the pineal and frontal organs of frogs: ultrastructure and opsin immunoreactivity. Archivum Histologicum Japonica 49, 495518.Google Scholar
Vigh-Teichmann, I., Vigh, B. &Aros, B. (1973). CSF contacting axons and synapses in the lumen of the pineal organ. Zeitschrift für Zellforschung 144, 139152.Google Scholar
Wake, K. (1973). Acetylcholinesterase-containing nerve cells and their distribution in the pineal organ of the goldfish, Carassius auratus. Zeitschrift für Zellforschung 145, 287298.Google Scholar
Wake, K., Ueck, M. &Oksche, A. (1974). Acetylcholinesterase-contaming nerve cells in the pineal complex and subcommissural area of the frogs, Rana ridibunda and Rana esculenta. Cell and Tissue Research 154, 423442.CrossRefGoogle ScholarPubMed
Wirsig, C.R. &Getchell, T.V. (1986). &hibian terminal nerve: distribution revealed by LHRH and AChE markers. Brain Research 385, 1021.Google Scholar
Wurtman, R.J., Axelrod, J. &Fischer, J.E. (1964). Melatonin synthesis in the pineal gland: effect of light mediated by the sympathetic nervous system. Science 143, 13281330.CrossRefGoogle ScholarPubMed
Yazulla, S. (1986). GABAergic mechanisms in the retina. Progress in Retinal Research 5, 152.CrossRefGoogle Scholar
Zilles, K. &Nickeleit, V. (1979). Efferent connections from the brain to the frontal organ in Rana temporaria demonstrated by labeling with horseradish peroxidase. Cell and Tissue Research 196, 189192.Google Scholar