Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T04:22:14.106Z Has data issue: false hasContentIssue false

Microspectrophotometric determinations of rod visual pigments in some adult and larval Australian amphibians

Published online by Cambridge University Press:  02 June 2009

J. C. Partridge
Affiliation:
Department of Zoology, University of Bristol, Woodland Road, Bristol BS8, IUG, U.K.
P. Speare
Affiliation:
Australian Institute of Marine Science, PMB No.3, Townsville, Queensland 4810, Australia
J. Shand
Affiliation:
Australian Institute of Marine Science, PMB No.3, Townsville, Queensland 4810, Australia Department of Marine Biology, James Cook University, Townsville, Queensland 4811, Australia
W. R. A. Muntz
Affiliation:
Department of Ecology and Evolutionary Biology, Monash University, Clayton, Victoria 3168, Australia
D. McB. Williams
Affiliation:
Australian Institute of Marine Science, PMB No.3, Townsville, Queensland 4810, Australia

Abstract

Visual pigments from the red rods of adults of eight species of Australian anuran amphibians, from a variety of habitats, were analyzed by microspectrophotometry. The λmax in all cases fell between 502 nm and 506 nm, and the absorption spectra were well fitted by an A1-based visual pigment template curve. Red rod pigments were also analyzed for a number of tadpoles. In some cases the data were best fitted with an A1based visual pigment template, in other cases with an A2-based template, and finally some tadpoles appeared to have mixtures of the two pigments.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowmaker, J.K. (1990). The visual pigments of fishes. In The Visual System of Fish, ed. Douglas, R.H. & Djamgoz, M.B.A., pp. 81107. London, New York, Tokyo, Melbourne and Madras: Chapman and Hall.CrossRefGoogle Scholar
Bowmaker, J.K., Loew, E.R. & Liebman, P.A. (1975). Variation in the λmax of rhodopsin from individual frogs. Vision Research 15, 9971003.CrossRefGoogle ScholarPubMed
Bridges, C.D.B. (1967). Spectroscopic properties of porphyropsins. Vision Research 1, 349369.CrossRefGoogle Scholar
Bridges, C.D.B. (1974). Effects of light and darkness on the visual pigments of amphibian tadpoles. Vision Research 14, 779793.CrossRefGoogle ScholarPubMed
Bridges, C.D.B., Hollyfield, J.G., Witkovsky, P. & Gallin, E. (1977). The visual pigment and vitamin A of Xenopus laevis embryos, larvae and adults. Experimental Eye Research 24, 713.CrossRefGoogle ScholarPubMed
Cogger, H.G. (1975). Reptiles and Amphibians of Australia. Sydney, Wellington, London: A.H. & A.W. Reed.Google Scholar
Crescitelu, F. (1958). The natural history of visual pigments. Annals of the New York Academy of Science 74, 230255.CrossRefGoogle Scholar
Crescitelu, F. (1973). The visual pigment system of Xenopus laevis: Tadpoles and adults. Vision Research 13, 855865.CrossRefGoogle Scholar
Dartnall, H.J.A. (1956). Further observations on the visual pigments of the clawed load, Xenopus laevis. Journal of Physiology, (London) 134, 327338.CrossRefGoogle Scholar
Dartnall, H.J.A. (1957). The Visual Pigments. London: Methuen and Co., Ltd.CrossRefGoogle Scholar
Dartnall, H.J.A. (1962). The photobiology of visual processes. In The Eye, Vol. 2, ed. Davson, H., pp. 523533. New York, London: Academic Press.Google Scholar
Dartnall, H.J.A. (1967). The visual pigment of the green rods. Vision Research 7, 116.CrossRefGoogle ScholarPubMed
Dartnall, H.J.A. & Lythgoe, J.N. (1965). The spectral clustering of visual pigments. Vision Research 5, 81100.CrossRefGoogle ScholarPubMed
Donner, K., Fmsov, M.L. & Govardovskii, V.I. (1990). The frequency of isomerization-like “dark” events in rhodopsin and porphyropsin rods in the bull-frog retina. Journal of Physiology (London) 428, 673692.CrossRefGoogle ScholarPubMed
Hárosi, F.I. (1975). Absorption spectra and linear dichroism of some amphibian photoreceptors. Journal of General Physiology 66, 357382.CrossRefGoogle ScholarPubMed
Levine, J.S. & MacnicholE.F., Jr. E.F., Jr. (1985). Microspectrophotometry of primate photoreceptors: Art, artifact and analysis. In The Visual System, ed. Fein, A. & Levine, J.S., pp. 7378. New York: Liss.Google Scholar
Liebman, P.A. & Entine, G. (1968). Visual pigments of frog and tadpole (Rana pipiens). Vision Research 8, 761775.CrossRefGoogle ScholarPubMed
MacnicholE.F., Jr. E.F., Jr. (1986). A unifying presentation of photopigment spectra. Vision Research 26, 15431556.CrossRefGoogle ScholarPubMed
Muntz, W.R.A. & Reuter, T. (1966). Visual pigments and spectral sensitivity in Rana temporaria and other European tadpoles. Vision Research 6, 601618.CrossRefGoogle ScholarPubMed
Partridge, J.C. (1986). Microspectrophotometry of vertebrate photo-receptors. Ph.D. Thesis, Bristol University.Google Scholar
Partridge, J.C. & De Grip, W.J. (1991). A new template for rhodopsin (vitamin A1 based) visual pigments. Vision Research 31, 619630.CrossRefGoogle ScholarPubMed
Reuter, T. (1969). Visual pigments and ganglion cell activity in the retinae of tadpole and adult frogs (Rana temporaria). Ada Zoologica Fennica 122, 164.Google Scholar
Reuter, T., White, R.H. & Wald, G. (1971). Rhodopsin and porphyropsin fields in the adult bullfrog retina. Journal of General Physiology 58, 351371.CrossRefGoogle ScholarPubMed
Tsin, A.T.C. & Beatty, D.D. (1980). Visual pigments and vitamins A in the adult bullfrog. Experimental Eye Research 30, 143153.CrossRefGoogle ScholarPubMed
Wilt, F.H. (1959). The differentiation of visual pigments in metamorphosing larvae of R. catesbiana. Developmental Biology 1, 199233.CrossRefGoogle Scholar
Witkovsky, P., Levine, J.S., Engbretson, G.A., Hassin, G. & MacnicholE.F., Jr. E.F., Jr. (1981). A microspectrophotometric study of normal and artificial visual pigments in the photoreceptors of Xenopus laevis. Vision Research 21, 867873.CrossRefGoogle ScholarPubMed