Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-03T09:01:52.624Z Has data issue: false hasContentIssue false

Metastable motion anisotropy

Published online by Cambridge University Press:  02 June 2009

Avi Chaudhuri
Affiliation:
School of Optometry and Departments of Physics and Molecular and Cell Biology, University of California, Berkeley
Donald A. Glaser
Affiliation:
School of Optometry and Departments of Physics and Molecular and Cell Biology, University of California, Berkeley

Abstract

The phenomenon of apparent motion can arise when two spatially separated visual tokens are presented in temporal sequence. If tokens at opposite corners of a hypothetical square are presented simultaneously followed by simultaneous presentation of tokens at the remaining two corners, an apparent motion percept may occur along either the vertical or horizontal axis. The display is perceptually metastable since most observers will perceive motion along only one axis at a time. The metastable display, however, produces anisotropic results, in that with central fixation, vertical motion is seen more frequently than horizontal motion. The ratio of the vertical to horizontal length of the sides of a rectangle needed to achieve equal frequencies of motion judgments along the respective axes falls in the range of 1.18–1.92 for different observers in our experiments. It appears that signal transmission across the vertical midline is a major determinant of the vertical bias, since the anisotropic effects disappear when the fixation point is sufficiently offset along the horizontal meridian so as to cause a fully homonymous representation of all of the metastable tokens. One of the factors may be signal degradation or delay in callosal transmission which could reduce the strength of the motion signal along the horizontal axis. In addition, there appears to be a strip along the vertical midline with a width of 30–50 min are within which reduced levels of anisotropy are found. The possibility that this strip is a consequence of a zone of naso-temporal overlap in the projection of the retina to the brain along the vertical meridian will be discussed.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albright, T.D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology 52, 11061130.CrossRefGoogle ScholarPubMed
Albright, T.D. (1989). Centrifugal directional bias in the middle temporal area (MT) of the macaque. Visual Neuroscience 2, 177188.CrossRefGoogle ScholarPubMed
Albright, T.D., Desimone, R. & Gross, C.G. (1984). Columnar organization of directionally selective cells in visual area MT of the macaque. Journal of Neurophysiology 51, 1631.CrossRefGoogle ScholarPubMed
Annis, R.C. & Frost, B. (1973). Human visual ecology and orientation anisotropies in acuity. Science 182, 729731.CrossRefGoogle ScholarPubMed
Anstis, S.M. (1978). Apparent movement. In Handbook of Sensory Physiology, Vol. VIII, ed. Held, R., Leibowitz, H.W. & Teuber, H.-L.New York: Springer.Google Scholar
Anstis, S.M. & Ramachandran, V.S. (1987). Visual inertia in apparent motion. Vision Research 27, 755764.CrossRefGoogle ScholarPubMed
Ball, K. & Sekuler, R. (1979). Masking of motion by broadband and filtered directional noise. Perception and Psychophysics 26, 206214.CrossRefGoogle Scholar
Ball, K. & Sekuler, R. (1980). Human vision favors centrifugal motion. Perception 9, 317325.CrossRefGoogle ScholarPubMed
Barlow, H.B. (1975). Visual experience and cortical development. Nature 258, 199204.CrossRefGoogle ScholarPubMed
Benevento, L.A. & Rezak, M. (1976). The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta): an autoradiographic study. Brain Research 108, 124.CrossRefGoogle ScholarPubMed
Berlucchi, G., Crea, F., Stefano, M.Di & Tassinari, G. (1977). Influence of spatial stimulus-response compatibility on reaction time of ipsilateral and contralateral hand to lateralised light stimulus. Journal of Experimental Psychology 3, 505517.Google Scholar
Blakemore, C. (1969). Binocular depth discrimination and the nasotemporal division. Journal of Physiology (London) 205, 471497.Google Scholar
Bunt, A.H., Minckler, D.S. & Johanson, G.W. (1977). Demonstration of bilateral projection of the central retina of the monkey with horseradish-peroxidase neuronography. Journal of Comparative Neurology 171, 619630.CrossRefGoogle ScholarPubMed
Burt, P. & Sperling, G. (1981). Time, distance, and feature trade-offs in visual apparent-movement. Psychology Reviews 88, 171195.CrossRefGoogle Scholar
Chaudhuri, A. (1987). Aspects of metastable apparent motion. PhD Dissertation, University of California, Berkeley. University Microfilms, Ann Arbor, MI.Google Scholar
Chaudhuri, A. & Glaser, D.A. (1986). A new anisotropy in apparent motion. Investigative Ophthalmology and Visual Science (Suppl.) 27, 3, 345.Google Scholar
Clarke, J.M. & Zaidel, E. (1989). Simple reaction time to lateralized light flashes. Brain 112, 849870.CrossRefGoogle ScholarPubMed
Cooper, M.L. & Pettigrew, J.D. (1979). The decussation of the retinothalamic pathway in the cat, with a note on the major meridians of the cat's eye. Journal of Comparative Neurology 187, 285312.CrossRefGoogle ScholarPubMed
Cowey, A. (1964). Projection of the retina on to striate and peristriate cortex in the squirrel monkey (Saimiri sciureus). Journal of Neurophysiology 27, 366393.CrossRefGoogle Scholar
Cynader, M., Berman, N. & Hein, A. (1975). Cats reared in a one-directional world: effects on receptive fields in visual cortex and superior colliculus. Experimental Brain Research 22, 267280.CrossRefGoogle Scholar
Davidson, R.J., Saron, C., Leslie, S.C. & Reiner, P.D. (1985). Visual evoked potential estimates of interhemispheric transfer time: comparison of dyslexics and normals. Journal of Clinical and Experimental Neuropsychology 7, 634.Google Scholar
Dow, B.M., Vautin, R.G. & Bauer, R. (1985). The mapping of visual space onto foveal striate cortex in the macaque monkey. Journal of Neuroscience 5, 890902.CrossRefGoogle ScholarPubMed
Fendrich, R. & Gazzaniga, M.S. (1989). Evidence of foveal splitting in a commissurotomy patient. Neuropsychologia 27, 273281.CrossRefGoogle Scholar
Fisher, N.F., Jampolsky, A. & Scott, A.B. (1968). Traumatic bitemporal hemianopsia. Part I: Diagnosis of macular splitting. American Journal of Ophthalmology 65, 237242.CrossRefGoogle Scholar
Fukuda, Y., Sawai, H., Watanabe, M., Wakakuwa, K. & Morigiwa, K. (1989). Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata). Journal of Neuroscience 9, 23532373.CrossRefGoogle ScholarPubMed
Gengerelli, J.A. (1948). Apparent movement in relation to homonymous and heteronymous stimulation of the cerebral hemispheres. Journal of Experimental Psychology 38, 592599.CrossRefGoogle ScholarPubMed
Green, M. (1986). What determines correspondence strength in apparent motion? Vision Research 26, 599607.CrossRefGoogle ScholarPubMed
Green, M. (1989). Color correspondence in apparent motion. Perception and Psychophysics 45, 1520.CrossRefGoogle ScholarPubMed
Green, M. & Odom, J.V. (1986). Correspondence matching in apparent motion: evidence for three-dimensional spatial representation. Science 233, 14271429.CrossRefGoogle ScholarPubMed
Halstead, W.C., Walker, A.E. & Bucy, P.C. (1940). Sparing and nonsparing of “macular” vision, associated with occipital lobectomy in man. Archives of Ophthalmology 24, 948966.CrossRefGoogle Scholar
HarveyL.O., Jr. L.O., Jr. (1978). Single representation of the visual midline in humans. Neuropsychologia 16, 601610.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology (London) 160, 106154.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1974). Uniformity of monkey striate cortex: a parallel relationship between field size, scatter and magnification factor. Journal of Comparative Neurology 158, 295305.CrossRefGoogle ScholarPubMed
Huber, A. (1962). Homonymous hemianopia after occipital lobectomy. American Journal of Ophthalmology 54, 623629.CrossRefGoogle ScholarPubMed
Iadecola, C., Conte, M.M. & Victor, J.D. (1989). Does bilateral cortical representation of temporal visual fields exist in man? Society for Neuroscience Abstracts 15, 118.Google Scholar
Illing, R.-B. & Wassle, H. (1981). Retinal projection to the thalamus in the cat: a quantitative investigation and a comparison with the retinotectal pathway. Journal of Comparative Neurology 202, 265285.CrossRefGoogle Scholar
Koerner, F. & Teuber, H.-L. (1973). Visual field defects after missile injuries to the geniculostriate pathway in man. Experimental Brain Research 18, 88113.CrossRefGoogle Scholar
Kruse, P., Stadler, J. & Wehner, T. (1986). Direction and frequency specific processing in the perception of long-range apparent movement. Vision Research 26, 327335.CrossRefGoogle ScholarPubMed
Leicester, J. (1968). Projection of the visual vertical meridian to cerebral cortex of the cat. Journal of Neurophysiology 31, 371382.CrossRefGoogle ScholarPubMed
Leventhal, A.G., Ault, S.J. & Vitek, D.J. (1988). The nasotemporal division in primate retina. The neural bases of macular sparing and splitting. Science 240, 6667.CrossRefGoogle ScholarPubMed
Levinson, E.. & Sekuler, R. (1976). Adaptation alters perceived direction of motion. Vision Research 16, 779781.CrossRefGoogle ScholarPubMed
Lin, C.-S. & Kaas, J.H. (1980). Projections from the medial nucleus of the inferior pulvinar complex to the middle temporal area of the visual cortex. Neuroscience 5, 22192228.CrossRefGoogle Scholar
Lines, C.R. (1984). Nasotemporal overlap investigated in a case of agenesis of the corpus callosum. Neuropsychologia 11, 8590.CrossRefGoogle Scholar
Lines, C.R. & Milner, A.D. (1983). Nasotemporal overlap in the human retina investigated by means of a simple reaction time to lateralized light flash. Experimental Brain Research 50, 166172.Google ScholarPubMed
Linksz, A. (1952). Physiology of the Eye, Vol. 1. New York: Grune & Stratton.Google Scholar
Malpeli, J.G. & Baker, F.H. (1975). The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta. Journal of Comparative Neurology 161, 569594.CrossRefGoogle ScholarPubMed
Mitchell, D.E. & Blakemore, C. (1970). Binocular depth perception and the corpus callosum. Vision Research 10, 4954.CrossRefGoogle ScholarPubMed
Neuhaus, W. (1930). Experimentelle untersuchung der scheinbewegung. Archive für die Gesamte Psychologie 75, 315458.Google Scholar
Newsome, W.T., Mikami, A. & Wurtz, R.H. (1986). Motion selectivity in macaque visual cortex. III. Psychophysics and physiology of apparent motion. Journal of Neurophysiology 55, 13401351.CrossRefGoogle ScholarPubMed
Ogawa, T., Imazawa, Y. & Chu, S. (1969). Electrophysiological tracings of intraretinal optic nerve fibers in the cat. Tohuku Journal of Experimental Medicine 98, 215222.CrossRefGoogle ScholarPubMed
Ogle, K.N. (1962). Spatial localization through binocular vision. In The Eye, Vol. 4, ed. Davson, H., New York: Academic Press.Google Scholar
Pasternak, T. & Merigan, W.H. (1980). Movement detection by cats: invariance with direction and target configuration. Journal of Comparative and Physiological Psychology 94, 943952.CrossRefGoogle ScholarPubMed
Perenin, M.T. & Vadot, E. (1981). Macular sparing investigated by means of Haidinger brushes. British Journal of Ophthalmology 65, 429435.CrossRefGoogle ScholarPubMed
Pettigrew, J.D., Nikara, T. & Bishop, P.O. (1968). Responses to moving slits by single units in cat striate cortex. Experimental Brain Research 6, 373390.Google ScholarPubMed
Poffenberger, A.T. (1912). Reaction time to retinal stimulation with special reference to the time lost in conduction through nerve centers. Archives of Psychology 23, 173.Google Scholar
Ramachandran, V.S. & Anstis, S.M. (1983). Perceptual organization in moving pattern. Nature 304, 529532.CrossRefGoogle Scholar
Ramachandran, V.S. & Anstis, S.M. (1985). Perceptual organization in multistable apparent motion. Perception 14, 135143.CrossRefGoogle ScholarPubMed
Ramachandran, V.S., Cronin-Golomb, A. & Myers, J.J. (1986). Perception of apparent motion by commissurotomy patients. Nature 320, 358359.CrossRefGoogle ScholarPubMed
Rovamo, J. & Virsu, V. (1979). An estimation and application of the human cortical magnification factor. Experimental Brain Research 37, 495510.CrossRefGoogle ScholarPubMed
Saron, C.D. & Davidson, R.J. (1989). Visual evoked potential measures of interhemispheric transfer time in humans. Behavioral Neuroscience 103, 11151138.CrossRefGoogle ScholarPubMed
Scott, T.R., Lavender, A.D., Mcwhirt, R.A. & Powell, D.A. (1966). Directional asymmetry of motion aftereffects. Journal of Experimental Psychology 71, 806815.CrossRefGoogle Scholar
Shechter, S. & Hochstein, S. (1989). Size, flux and luminance effects in the apparent motion correspondence process. Vision Research 29, 559591.CrossRefGoogle ScholarPubMed
Shechter, S., Hochstein, S. & Hillman, P. (1988). Shape similarity and distance disparity as apparent motion correspondence cues. Vision Research 28, 10131021.CrossRefGoogle ScholarPubMed
Spalding, J.M.K. (1952). Wounds of the visual pathway, Part III. The striate cortex. Journal of Neurology, Neurosurgery, and Psychiatry 15, 169183.CrossRefGoogle Scholar
Cyr, G.J.St. & Fender, D.H. (1969). The interplay of drifts and flicks in binocular fixation. Vision Research 9, 245265.CrossRefGoogle Scholar
Sterling, P. & Wickelgren, B.G. (1969). Visual receptive fields in the superior colliculus of the cat. Journal of Neurophysiology 32, 115.CrossRefGoogle ScholarPubMed
Stone, J. (1966). The naso-temporal division of the cat's retina. Journal of Comparative Neurology 136, 585600.Google Scholar
Stone, J., Leicester, J. & Sherman, S.M. (1973). The naso-temporal division of the monkey's retina. Journal of Comparative Neurology 150, 333348.CrossRefGoogle ScholarPubMed
Tootell, R.B.H., Silverman, M.S., Switkes, E. & Devalois, R.L. (1982). Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science 218, 902904.CrossRefGoogle ScholarPubMed
Ullman, S. (1979). The Interpretation of Visual Motion. Cambridge, Massachusetts: MIT Press.CrossRefGoogle Scholar
Van Essen, D.C., Newsome, W.T. & Maunsell, J.H.R. (1984). The visual-field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Research 24, 429448.CrossRefGoogle ScholarPubMed
Essen, D.C.Van & Zeki, S.M. (1978). The topographic organization of rhesus monkey prestriate cortex. Journal of Physiology (London) 277, 193226.Google Scholar
Vital-Durand, F. & Jeannerod, M. (1974). Maturation of the optokinetic response: genetic and environmental factors. Brain Research 71, 249257.CrossRefGoogle ScholarPubMed
Werthemer, M. (1912). Experimentelle studein uber das sehen von bewegung. Zeitschrift für Psychologie 61, 161265.Google Scholar
Whitteridge, D. & Daniel, P.M. (1961). The Visual System: Neurophysiology and Psychophysics, ed. Jung, R. & Kornhuber, H., Heidelberg: Springer.Google Scholar
Williams, D. & Gassel, M.M. (1962). Visual function in patients with homonymous hemianopia: Part 1: The visual fields. Brain 85, 175250.CrossRefGoogle Scholar