Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:44:54.106Z Has data issue: false hasContentIssue false

Linking sensory neurons to visually guided behavior: Relating MST activity to steering in a virtual environment

Published online by Cambridge University Press:  30 October 2013

SETH W. EGGER*
Affiliation:
Center for Neuroscience, University of California, Davis, California
KENNETH H. BRITTEN
Affiliation:
Center for Neuroscience, University of California, Davis, California Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
*
*Address correspondence to: Seth W. Egger, Center for Neuroscience, University of California, 1544 Newton Court, Davis, CA 95616. E-mail: [email protected]

Abstract

Many complex behaviors rely on guidance from sensations. To perform these behaviors, the motor system must decode information relevant to the task from the sensory system. However, identifying the neurons responsible for encoding the appropriate sensory information remains a difficult problem for neurophysiologists. A key step toward identifying candidate systems is finding neurons or groups of neurons capable of representing the stimuli adequately to support behavior. A traditional approach involves quantitatively measuring the performance of single neurons and comparing this to the performance of the animal. One of the strongest pieces of evidence in support of a neuronal population being involved in a behavioral task comes from the signals being sufficient to support behavior. Numerous experiments using perceptual decision tasks show that visual cortical neurons in many areas have this property. However, most visually guided behaviors are not categorical but continuous and dynamic. In this article, we review the concept of sufficiency and the tools used to measure neural and behavioral performance. We show how concepts from information theory can be used to measure the ongoing performance of both neurons and animal behavior. Finally, we apply these tools to dorsal medial superior temporal (MSTd) neurons and demonstrate that these neurons can represent stimuli important to navigation to a distant goal. We find that MSTd neurons represent ongoing steering error in a virtual-reality steering task. Although most individual neurons were insufficient to support the behavior, some very nearly matched the animal’s estimation performance. These results are consistent with many results from perceptual experiments and in line with the predictions of Mountcastle’s “lower envelope principle.”

Type
Linking performance and neural mechanisms in adults
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Averbeck, B.B., Crowe, D.A., Chafee, M.V. & Georgopoulos, A.P. (2003). Neural activity in prefrontal cortex during copying geometrical shapes. II. Decoding shape segments from neural ensembles. Experimental Brain Research 150, 142153.CrossRefGoogle ScholarPubMed
Bair, W. & Koch, C. (1996). Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Computation 8, 11851202.CrossRefGoogle ScholarPubMed
Barlow, H. (1972). Single units and sensation: A neuron doctrine for perceptual psychology? Perception 1, 371394.CrossRefGoogle ScholarPubMed
Barlow, H.B., Levick, W.R. & Yoon, M. (1971). Responses to single quanta of light in retinal ganglion cells of the cat. Vision Research 11 (Suppl. 3), 87101.CrossRefGoogle Scholar
Baty, D.L. (1969). Effects of display gain on human operator information processing rate in a rate control tracking task. IEEE Transactions on Man-Machine Systems MMS 10, 123131.CrossRefGoogle Scholar
Bialek, W., Rieke, F., De Ruyter Van Steveninick, R. & Warland, D. (1991). Reading a neural code. Science 252, 18541857.CrossRefGoogle Scholar
Bishop, P.O., Coombs, J.S. & Henry, G.H. (1973). Receptive fields of simple cells in the cat striate cortex. The Journal of Physiology 231, 3160.CrossRefGoogle ScholarPubMed
Bradley, D.C., Maxwell, M., Andersen, R.A., Banks, M.S. & Shenoy, K.V. (1996). Mechanisms of heading perception in primate visual cortex. Science 273, 15441547.CrossRefGoogle ScholarPubMed
Bremmer, F., Kubischik, M., Pekel, M., Hoffmann, K.P. & Lappe, M. (2010). Visual selectivity for heading in monkey area MST. Experimental Brain Research 200, 5160.CrossRefGoogle ScholarPubMed
Bremmer, S., Ilg, U.J., Thiele, A., Distler, C. & Hoffman, K.P. (1997). Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. Journal of Neurophysiology 77, 944961.CrossRefGoogle ScholarPubMed
Brindley, G. (1960). Physiology of the Retina and the Visual Pathway. London: Edward Arnold.Google Scholar
Britten, K.H., Newsome, W.T., Shadlen, M.N., Celebrini, S. & Movshon, J.A. (1996). A relationship between behavioral choice and the visual responses of neurons in macaque MT. Visual Neuroscience 13, 87100.CrossRefGoogle ScholarPubMed
Britten, K.H., Shadlen, M.N., Newsome, W.T. & Movshon, J.A. (1992). The analysis of visual motion: A comparison of neuronal and psychophysical performance. The Journal of Neuroscience 12, 47454765.CrossRefGoogle Scholar
Britten, K.H. & van Wezel, R.J. (2002). Area MST and heading perception in macaque monkeys. Cerebral Cortex 12, 692701.CrossRefGoogle ScholarPubMed
Britten, K.H. & van Wezel, R.J.A. (1998). Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nature Neuroscience 1, 5963.CrossRefGoogle ScholarPubMed
Buracas, G.T., Zador, A.M., Deweese, M.R. & Albright, T.D. (1998). Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20, 959969.CrossRefGoogle ScholarPubMed
Butts, D.A., Weng, C., Jin, J., Yeh, C.I., Lesica, N.A., Alonso, J.M. & Stanley, G.B. (2007). Temporal precision in the neural code and the timescales of natural vision. Nature 449, 9295.CrossRefGoogle ScholarPubMed
Celebrini, S. & Newsome, W.T. (1994). Microstimulation of extrastriate area MST influences perceptual judgements of motion direction. Investigative Ophthalmology & Visual Science 35, 1828.Google Scholar
Chacron, M.J., Maler, L. & Bastian, J. (2005). Electroreceptor neuron dynamics shape information transmission. Nature Neuroscience 8, 673678.CrossRefGoogle ScholarPubMed
Chan, R.B. & Childress, D.S. (1990). On information transmission in human-machine systems: Channel capacity and optimal filtering. IEEE Transactions on Systems, Man, and Cybernetics 20, 11361145.CrossRefGoogle Scholar
Churchland, M.M., Afshar, A. & Shenoy, K.V. (2006). A central source of movement variability. Neuron 52, 10851096.CrossRefGoogle ScholarPubMed
Clague, H., Theunissen, F. & Miller, J.P. (1997). Effects of adaptation on neural coding by primary sensory interneurons in the cricket cercal system. Journal of Neurophysiology 77, 207220.CrossRefGoogle ScholarPubMed
Collett, T.S. & Land, M.F. (1975). Visual control of flight behavior in the hoverfly, Syritta-pipiens L. Journal of Comparative Physiology 99, 166.CrossRefGoogle Scholar
Cover, T.M. & Thomas, J.A. (1991). Elements of Information Theory. New York: Whiley.Google Scholar
Dayan, P. & Abbott, L.F. (2001). Theoretical Neuroscience. Cambridge, MA: MIT Press.Google Scholar
de Ruyter van Steveninck, R.R., Lewen, G.D., Strong, S.P., Koberle, R. & Bialek, W. (1997). Reproducibility and variability in neural spike trains. Science 275, 18051808.CrossRefGoogle ScholarPubMed
de Ruyter van Steveninick, R. & Bialek, W. (1988). Real-time performance of a movement-sensitive neuron in the blowfly. Proceedings of the Royal Society of London. Series B, Biological Sciences 234, 379414.Google Scholar
Dubner, R. & Zeki, S.M. (1971). Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus. Brain Research 35, 528532.CrossRefGoogle Scholar
Duffy, C.J. (1998). MST neurons respond to optic flow and translational movement. Journal of Neurophysiology 80, 18161827.CrossRefGoogle ScholarPubMed
Duffy, C.J. & Wurtz, R.H. (1991). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. Journal of Neurophysiology 65, 13291345.CrossRefGoogle Scholar
Duffy, C.J. & Wurtz, R.H. (1995). Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. Journal of Neuroscience 15, 51925208.CrossRefGoogle ScholarPubMed
Egger, S.W., Englehardt, H.R. & Britten, K.H. (2010). Monkey steering responses reveal rapid viual-motor feedback. PLoS One 5, e11975. doi: 11910.11371/journal.pone.0011975.CrossRefGoogle ScholarPubMed
Elkind, J.I. & Forgie, C.D. (1959). Characteristics of the human operator in simple manual control systems. IRE Transactions on Automatic Control, AC 4, 4455.CrossRefGoogle Scholar
Elkind, J.I. & Sprague, L.T. (1961). Transmission of information in simple manual control systems. IRE Transactions on Human Factors in Electronics, HFE 2, 5860.CrossRefGoogle Scholar
Eskandar, E.N. & Assad, J.A. (1999). Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nature Neuroscience 2, 8893.CrossRefGoogle ScholarPubMed
Field, D.T., Wilkie, R.M. & Wann, J.P. (2007). Neural systems in the visual control of steering. The Journal of Neuroscience 27, 80028010.CrossRefGoogle ScholarPubMed
Fitts, P.M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47, 381391.CrossRefGoogle ScholarPubMed
Gegenfurtner, K.R., Xing, D., Scott, B.H. & Hawken, M.J. (2003). A comparison of pursuit eye movement and perceptual performance in speed discrimination. Journal of Vision 3, 865876.CrossRefGoogle ScholarPubMed
Georgopoulos, A.P. & Massey, J.T. (1988). Cognitive spatial-motor processes. 2. Information transmitted by the direction of two-dimensional arm movements and by neuronal populations in primate motor cortex and area 5. Experimental Brain Research 69, 315326.Google ScholarPubMed
Gibson, J.J. (1950). Perception of the Visual World. Boston, MA: Houghton-Mifflin.Google Scholar
Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Churchland, M.M., Kaufman, M.T., Kao, J.C., Ryu, S.I. & Shenoy, K.V. (2012). A high-performance neural prosthesis enabled by control algorithm design. Nature Neuroscience 15, 17521757.CrossRefGoogle ScholarPubMed
Giolli, R.A., Gregory, K.M., Suzuki, D.A., Blanks, R.H., Lui, F. & Betelak, K.F. (2001). Cortical and subcortical afferents to the nucleus reticularis tegmenti pontis and basal pontine nuclei in the macaque monkey. Visual Neuroscience 18, 725740.CrossRefGoogle Scholar
Graziano, M.S.A., Andersen, R.A. & Snowden, R.J. (1994). Tuning of MST neurons to spiral motions. The Journal of Neuroscience 14, 5467.CrossRefGoogle ScholarPubMed
Gu, Y., Angelaki, D.E. & Deangelis, G.C. (2008). Neural correlates of multisensory cue integration in macaque MSTd. Nature Neuroscience 11, 12011210.CrossRefGoogle ScholarPubMed
Gu, Y., Deangelis, G.C. & Angelaki, D.E. (2012). Causal links between dorsal medial superior temporal area neurons and multisensory heading perception. The Journal of Neuroscience 32, 22992313.CrossRefGoogle ScholarPubMed
Gu, Y., Watkins, P.V., Angelaki, D.E. & Deangelis, G.C. (2006). Visual and nonvisual contributions to three-dimensional heading selectivity in the medial superior temporal area. The Journal of Neuroscience 26, 7385.CrossRefGoogle ScholarPubMed
Haag, J. & Borst, A. (1998). Active membrane properties and signal encoding in graded potential neurons. The Journal of Neuroscience 18, 79727986.CrossRefGoogle ScholarPubMed
Harris, C.M. & Wolpert, D.M. (1998). Signal-dependent noise determines motor planning. Nature 394, 780784.CrossRefGoogle ScholarPubMed
Hausen, K. (1982). Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: Receptive field organization and response characteristics. Biological Cybernetics 46, 6779.CrossRefGoogle Scholar
Heuer, H.W. & Britten, K.H. (2002). Contrast dependence of response normalization in area MT of the rhesus macaque. Journal of Neurophysiology 88, 33983408.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual system. The Journal of Physiology 160, 106154.CrossRefGoogle Scholar
Kawano, K., Sasaki, M. & Yamashita, M. (1984). Response properties of neurons in posterior parietal cortex of monkey during visual-vestibular stimulation. I. Visual tracking neurons. Journal of Neurophysiology 51, 340351.CrossRefGoogle ScholarPubMed
Kawano, K., Shidara, M., Watanabe, Y. & Yamane, S. (1994). Neural activity in cortical area MST of alert monkey during ocular following responses. Journal of Neurophysiology 71, 23052324.CrossRefGoogle ScholarPubMed
Kishore, S., Hornick, N., Sato, N., Page, W.K. & Duffy, C.J. (2011). Driving strategy alters neuronal responses to self-movement: Cortical mechanisms of distracted driving. Cerebral Cortex 22, 201208.CrossRefGoogle ScholarPubMed
Komatsu, H. & Wurtz, R.H. (1988 a). Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. Journal of Neurophysiology 60, 580603.CrossRefGoogle ScholarPubMed
Komatsu, H. & Wurtz, R.H. (1988 b). Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. Journal of Neurophysiology 60, 621644.CrossRefGoogle ScholarPubMed
Levison, W.H., Baron, S. & Kleinman, D.L. (1969). A model for human controller remnant. IEEE Transactions on Man-Machine Systems MMS 10, 101108.CrossRefGoogle Scholar
Lisberger, S.G. & Movshon, J.A. (1999). Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. The Journal of Neuroscience 19, 22242246.CrossRefGoogle ScholarPubMed
Maciokas, J.B. & Britten, K.H. (2010). Extrastriate area MST and parietal area VIP similarly represent forward headings. Journal of Neurophysiology 104, 239247.CrossRefGoogle ScholarPubMed
Massey, J.T., Drake, R.A. & Georgopoulos, A.P. (1991 a). Cognitive spatial-motor processes. 5. Specification of the direction of visually guided isometric forces in two-dimensional space: Time course of information transmitted and effect of constant force bias. Experimental Brain Research 83, 446452.CrossRefGoogle ScholarPubMed
Massey, J.T., Drake, R.A., Lurito, J.T. & Georgopoulos, A.P. (1991 b). Cognitive spatial-motor processes. 4. Specification of the direction of visually guided isometric forces in two-dimensional space: Information transmitted and effects of visual force-feedback. Experimental Brain Research 83, 439445.CrossRefGoogle ScholarPubMed
Mikami, A., Newsome, W.T. & Wurtz, R.H. (1986). Motion selectivity in macaque visual cortex: I. Mechanisms of direction and speed selectivity in extrastriate area MT. Journal of Neurophysiology 55, 13081327.CrossRefGoogle ScholarPubMed
Mountcastle, V., Lamotte, R. & Carli, G. (1972). Detection thresholds for vibratory stimuli in humans and monkeys; comparison with threshold events in mechanoreceptive first order afferent nerve fibers innervating monkey hands. Journal of Neurophysiology 35, 122.CrossRefGoogle Scholar
Mulliken, G.H., Musallam, S. & Andersen, R.A. (2008). Decoding trajectories from posterior parietal cortex ensembles. The Journal of Neuroscience 28, 1291312926.CrossRefGoogle ScholarPubMed
Newsome, W.T., Wurtz, R.H., Dursteler, M.R. & Mikami, A. (1985). Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. The Journal of Neuroscience 5, 825840.CrossRefGoogle ScholarPubMed
Newsome, W.T., Wurtz, R.H. & Komatsu, H. (1988). Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. Journal of Neurophysiology 60, 604620.CrossRefGoogle ScholarPubMed
Osborne, L.C., Bialek, W. & Lisberger, S.G. (2004). Time course of information about motion direction in visual area MT of macaque monkeys. The Journal of Neuroscience 24, 32103222.CrossRefGoogle ScholarPubMed
Osborne, L.C., Hohl, S.S., Bialek, W. & Lisberger, S.G. (2007). Time course of precision in smooth-pursuit eye movements of monkeys. The Journal of Neuroscience 27, 29872998.CrossRefGoogle ScholarPubMed
Osborne, L.C., Lisberger, S.G. & Bialek, W. (2005). A sensory source for motor variation. Nature 437, 412416.CrossRefGoogle ScholarPubMed
Page, W.K. & Duffy, C.J. (1999). MST neuronal responses to heading direction during pursuit eye movements. Journal of Neurophysiology 81, 596610.CrossRefGoogle ScholarPubMed
Page, W.K. & Duffy, C.J. (2008). Cortical neuronal responses to optic flow are shaped by visual strategies for steering. Cerebral Cortex 18, 727739.CrossRefGoogle ScholarPubMed
Priebe, N.J., Churchland, M.M. & Lisberger, S.G. (2002). Constraints on the source of short-term motion adaptation in macaque area MT. I. The role of input and intrinsic mechanisms. Journal of Neurophysiology 88, 354369.CrossRefGoogle ScholarPubMed
Rasche, C. & Gegenfurtner, K.R. (2009). Precision of speed discrimination and smooth pursuit eye movements. Vision Research 49, 514523.CrossRefGoogle ScholarPubMed
Reinagel, P. & Reid, R.C. (2000). Temporal coding of visual information in the thalamus. The Journal of Neuroscience 20, 53925400.CrossRefGoogle ScholarPubMed
Rieke, F., Warland, D., Van Steneninck, R.R. & Bialek, W. (1997). Spikes: Exploring the Neural Code. Cambridge, MA: MIT Press.Google Scholar
Roddey, J.C. & Jacobs, G.A. (1996). Information theoretic analysis of dynamical encoding by filiform mechanoreceptors in the cricket cercal system. Journal of Neurophysiology 75, 13651376.CrossRefGoogle ScholarPubMed
Rosner, R., Warzecha, A.K. (2011). Relating neuronal to behavioral performance: variability of optomotor responses in the blowfly. PLoS One 6, e26886. doi:10.1371/journal.pone.0026886.CrossRefGoogle ScholarPubMed
Sakitt, B., Lestienne, F. & Zeffiro, T.A. (1983). The information transmitted at final position in visually triggered forearm movements. Biological Cybernetics 46, 111118.CrossRefGoogle ScholarPubMed
Sato, N., Kishore, S., Page, W.K. & Duffy, C.J. (2010). Cortical neurons combine visual cues about self-movement. Experimental Brain Research 206, 283297.CrossRefGoogle ScholarPubMed
Schmidt, R.A., Zelaznik, H., Hawkins, B., Frank, J.S. & Quinn, J.T. Jr. (1979). Motor-output variability: A theory for the accuracy of rapid motor acts. Psychological Review 47, 415451.CrossRefGoogle ScholarPubMed
Schmolesky, M.T., Wang, Y., Hanes, D.P., Thompson, K.G., Leutgeb, S., Schall, J.D. & Leventhal, A.G. (1998). Signal timing across the macaque visual system. Journal of Neurophysiology 79, 32723278.CrossRefGoogle ScholarPubMed
Schwartz, O., Pillow, J.W., Rust, N.C. & Simoncelli, E.P. (2006). Spike-triggered neural characterization. Journal of Vision 6, 484507.CrossRefGoogle ScholarPubMed
Shannon, C.E. & Weaver, W. (1949). The Mathematical Theory of Communication. Urbana, IL: University of Illinois Press.Google Scholar
Sharpee, T., Rust, N.C. & Bialek, W. (2004). Analyzing neural responses to natural signals: Maximally informative dimensions. Neural Computation 16, 223250.CrossRefGoogle ScholarPubMed
Soechting, J.F. & Flanders, M. (1989). Sensorimotor representations for pointing to targets in three-dimensional space. Journal of Neurophysiology 62, 582594.CrossRefGoogle ScholarPubMed
Stone, L.S. & Krauzlis, R.J. (2003). Shared motion signals for human perceptual decisions and oculomotor actions. Journal of Vision 3, 725736.CrossRefGoogle ScholarPubMed
Tanaka, K., Hikosaka, H., Saito, H., Yukie, Y., Fukada, Y. & Iwai, E. (1986). Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. The Journal of Neuroscience 6, 134144.CrossRefGoogle ScholarPubMed
Tanaka, K. & Saito, H. (1989). Analysis of motion of the visual field by direction, expansion/contraction and rotation cells clustered in the dorsal part of the medial superior temporal area of the Macaque monkey. Journal of Neurophysiology 62, 626641.CrossRefGoogle ScholarPubMed
Teller, D. (1984). Linking propositions. Vision Research 24, 12331246.CrossRefGoogle ScholarPubMed
Theunissen, F., Roddey, J.C., Stufflebeam, S., Clague, H. & Miller, J.P. (1996). Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system. Journal of Neurophysiology 75, 13451364.CrossRefGoogle ScholarPubMed
Tolhurst, D.J., Movshon, J.A. & Dean, A.F. (1983). The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research 23, 775785.CrossRefGoogle Scholar
van Beers, R.J. (2007). The sources of variability in saccadic eye movements. The Journal of Neuroscience 27, 87578770.CrossRefGoogle ScholarPubMed
van Beers, R.J., Haggard, P. & Wolpert, D.M. (2004). The role of execution noise in movement variability. Journal of Neurophysiology 91, 10501063.CrossRefGoogle ScholarPubMed
Warland, D.K., Reinagel, P. & Meister, M. (1997). Decoding visual information from a population of retinal ganglion cells. Journal of Neurophysiology 78, 23362350.CrossRefGoogle ScholarPubMed
Warzecha, A.K. & Egelhaaf, M. (1997). How reliably does a neuron in the visual motion pathway of the fly encode behaviourally relevant information? The European Journal of Neuroscience 9, 13651374.CrossRefGoogle ScholarPubMed
Wempe, T.E. & Baty, D.L. (1966). Usefulness of transinformation as a measure of human tracking performance. NASA SP 128, 111129.Google Scholar
Wempe, T.E. & Baty, D.L. (1968). Human information processing rates during certain multiaxis tracking tasks with a concurrent auditory task. IEEE Transactions on Man-Machine Systems MMS 9, 129138.CrossRefGoogle Scholar
Wessel, R., Koch, C. & Gabbiani, F. (1996). Coding of time-varying electric field amplitude modulations in a wave-type electric fish. Journal of Neurophysiology 75, 22802293.CrossRefGoogle Scholar
Zhang, T., Heuer, H.W. & Britten, K.H. (2004). Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron 42, 9931001.CrossRefGoogle ScholarPubMed