Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T05:48:41.888Z Has data issue: false hasContentIssue false

The Limulus-eye view of the world

Published online by Cambridge University Press:  02 June 2009

Erik D. Herzog
Affiliation:
Institute for Sensory Research, Syracuse University, Syracuse
Robert B. Barlow Jr
Affiliation:
Institute for Sensory Research, Syracuse University, Syracuse Reprint requests to: E. Herzog, Institute for Sensory Research, Merrill Lane, Syracuse, NY 13244-5290, USA.

Abstract

The compound lateral eye of the adult horseshoe crab, Limulus polyphemus, views the world with approximately 1000 ommatidia. Their optical properties and orientation determine the eye's resolution, field of view, and light collecting ability. Optic axes of adjacent ommatidia diverge from 1–15 deg with an average value of 5.5 deg yielding an average resolution of 0.1 cycles/deg. Resolution is not uniform across the eye: along horizontal planes, it is maximal in the anterior region of the eye (0.22 cycle/deg) and minimal in the posterior region (0.07 cycle/deg); along vertical planes, it is maximal near or just below the horizon (0.23 cycle/deg) and minimal above the horizon (0.04 cycle/deg). Together the ommatidia of one eye view approximately 60% of the hemispheric world on one side of the body. There is little binocular overlap (<1% of total field). Ommatidial facets of up to 320 μm in diameter (among the largest known in the animal kingdom) make the eye a superb light collector. Limulus are known to use vision to find mates both day and night. Apparently, the optics of the lateral eye sample a large enough part of the world with sufficient resolution and light-collecting ability for the animal to succeed at this essential task.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barlow, R.B. Jr (1969). Inhibitory fields in the Limulus lateral eye. Journal of General Physiology 54, 383396.CrossRefGoogle ScholarPubMed
Barlow, R.B. Jr (1983). Circadian rhythms in the Limulus visual system. Journal of Neuroscience 3, 856870.CrossRefGoogle ScholarPubMed
Barlow, R.B. Jr (1988). Circadian rhythm in sensitivity of the Limulus retina nearly compensates for day-night changes in ambient illumination. Investigative Ophthalmology and Visual Science (Suppl.) 29, 350.Google Scholar
Barlow, R.B. Jr, Bolanowski, S.J. & Brachman, M.L. (1977). Efferent optic nerve fibers mediate circadian rhythms in the Limulus eye. Science 197, 8689.CrossRefGoogle ScholarPubMed
Barlow, R.B. Jr, Chamberlain, S.C. & Levinson, J.Z. (1980). Limulus brain modulates the structure and function of the lateral eyes. Science 210, 10371039.CrossRefGoogle ScholarPubMed
Barlow, R.B. Jr, Ireland, L.C. & Kass, L. (1982). Vision has a role in Limulus mating behavior. Nature 296, 6566.CrossRefGoogle Scholar
Barlow, R.B. Jr, Chamberlain, S.C. & Kass, L. (1984). Circadian rhythms in retinal function. In Molecular and Cellular Basis of Visual Acuity, ed. Hilfer, S.R. & Sheffield, J.B., pp. 3153. New York: Springer-Verlag.CrossRefGoogle Scholar
Barlow, R.B. Jr, Chamberlain, S.C. & Lehman, H.K. (1989). Circadian rhythms in the invertebrate retina. In Facets of Vision, ed. Stavenoa, D.G. & Hardie, R.O. pp. 257280. Berlin: SpringerVerlag.CrossRefGoogle Scholar
Barlow, R.B. Jr, Powers, M.K., Howard, H. & Kass, L. (1987). Vision in Limulus mating migration. In Signposts in the Sea, ed. Hernkind, W. & Thistle, A.B., pp. 6984. Department of Biological Science, FSU: Tallahassee, Florida.Google Scholar
Barlow, R.B. Jr, Prakash, R. & Solessio, E. (1991). The neural network of the Limulus retina: From computer to behavior. American Zoologist (in press).Google Scholar
Batra, R. & Barlow, R.B. Jr (1990). Efferent control of temporal response properties of the Limulus lateral eye. Journal of General Physiology 95, 229244.CrossRefGoogle ScholarPubMed
Chamberlain, S.C. & Barlow, R.B. Jr (1987). Control of structural rhythms in the lateral eye of Limulus: Interactions of diurnal lighting and circadian efferent activity. Journal of Neuroscience 7, 21352144.CrossRefGoogle Scholar
Exner, S. (1891). Die Physiologie der facettirten Augen von Krebsen und Insecten. Leipzig: Deuticke.CrossRefGoogle Scholar
French, A.S., Snyder, A. & Stavenga, D.G. (1977). Image degradation by an irregular retinal mosaic. Biological Cybernetics 27, 229233.CrossRefGoogle ScholarPubMed
Hartline, H.K. & Ratliff, F. (1972). Inhibitory interaction in the retina of Limulus. In Vision in Invertebrates (Handbook of Sensory Physiology, Vol. VII/2), ed. Fuortes, M., pp. 381448. Berlin: Springer.Google Scholar
Herzog, E.D. & Barlow, R.B. Jr (1990). Limulus-eye view of the world. Biological Bulletin 179, 230.Google Scholar
Horridge, G. (1977). The compound eyes of insects. Scientific American 237, 108121.CrossRefGoogle Scholar
Horridge, G. (1978). The separation of visual axes in apposition compound eyes. Philosophical Transactions of Royal Society B (London) 285, 159.Google ScholarPubMed
Kaplan, E. & Barlow, R.B. Jr (1980). Circadian clock in Limulus brain increases response and decreases noise of retinal photoreceptors. Nature 286, 393395.CrossRefGoogle ScholarPubMed
Kirschfeld, K. & Reichardt, W. (1964). Die Verabeitung stationärer optischer Nachrichten im Komplauge von Limulus (Ommatidien-Sehfeld und räumliche Vereilung der Inhibition). Kybernetik 2, 4361.CrossRefGoogle Scholar
Land, M.F. (1979). The optical mechanism of the eye of Limulus. Nature 280, 396397.CrossRefGoogle Scholar
Land, M.F. (1989). The eyes of hyperiid amphipods: Relations of optical structure to depth. Journal of Comparative Physiology A 164, 751762.CrossRefGoogle Scholar
Laughlin, S. (1981). Peripheral Visual Systems of Invertebrates. In Vision in Invertebrates (Handbook of Sensory Physiology, Vol. VII/6B), ed. Autrum, H., pp. 133280. Berlin: Springer.Google Scholar
Leydig, F. (1855). Zum feineren Bau der Arthropoden. Muller's Archives of Anatomical Physiology 376480.Google Scholar
Marler, J.J., Barlow, R.B. Jr, Eisele, L. & Kass, L. (1983). Photoreceptors add at the anterior edge of Limulus lateral eye. Biological Bulletin (Abstracts) 165, 541.Google Scholar
Powers, M.K., Barlow, R.B. Jr & Kass, L. (1991). Visual performance of horseshoe crabs day and night. Visual Neuroscience 7, 179189.CrossRefGoogle ScholarPubMed
Ratliff, F. & Hartline, H.K. (1974). In Studies on Excitation and Inhibition in the Retina, ed. Ratliff, F., pp. 245661. New York: The Rockefeller University Press.Google Scholar
Rossel, S. (1979). Regional differences in photoreceptor performance in the eye of the praying mantis. Journal of Comparative Physiology 131, 95112.CrossRefGoogle Scholar
Schuster, C.N. Jr (1982). A pictorial review of the natural history and ecology of the horseshoe crab, Limulus polyphemus, with reference to other Limulidae. In Physiology and Biology of Horseshoe Crabs: Studies on Normal and Environmentally Stressed Animals ed. Liss, A.R., pp. 152. New York: Liss, Inc.Google Scholar
Snyder, A.W. (1977). Acuity of compound eyes: Physical limitations and designs. Journal of Comparative Physiology 116, 161182.CrossRefGoogle Scholar
Snyder, A. (1979). Physics of vision in compound eye. In Vision in Invertebrates (Handbook of Sensory Physiology, Vol. VII/6A), ed. Autrum, H., pp. 225313. Berlin: Springer.Google Scholar
Stavenga, D.G. (1975). Optical qualities of the fly eye. An approach from the side of geometrical, physical and waveguide optics. In Photoreceptor Optics, ed. Snyder, A. & Menzel, R., pp. 126144. Berlin: Springer.CrossRefGoogle Scholar
Stavenga, D.G. (1979). Pseudopupils of compound eyes. In Vision in Invertebrates (Handbook of Sensory Physiology, Vol. VII/6A), ed. Autrum, H., pp. 357439. Berlin: Springer.Google Scholar
Von Campenhausen, C. (1967). The ability of Limulus to see visual patterns. Journal of Experimental Biology 46, 557570.CrossRefGoogle Scholar
Waterman, T.H. (1954a). Relative growth and the compound eye in Xiphosura. Journal of Morphology 54, 125158.CrossRefGoogle Scholar
Waterman, T.H. (1954b). Directional sensitivity of single ommatidia in the compound eye of Limulus. Proceedings of National Academy of Sciences of the U.S.A. 40, 252262.CrossRefGoogle ScholarPubMed
Weiner, W.W. & Chamberlain, S.C. (1991). Morphological properties of the Limulus ommatidial array: Dioptrics and photoreceptors. Investigative Ophthalmology and Visual Science (Suppl.) 32, 1128.Google Scholar