Published online by Cambridge University Press: 06 September 2006
Platyrrhine monkeys typically have only a single X-chromosome opsin gene. Alleles of this gene code for multiple versions of middle- to long-wavelength cone photopigments. X-chromosome inactivation provides heterozygous females with a retinal mosaic of cones containing either of two types of M and L pigment, thus establishing the photopigment basis for trichromatic color vision. This study examined the proportions of L and M cones created by this process. For that purpose, electroretinogram flicker photometry was used to obtain complete spectral sensitivity functions from 60 heterozygous female monkeys drawn from seven genera of platyrrhine monkeys. To obtain estimates of cone proportions, these functions were subsequently fit with linear combinations of L and M cone fundamentals that were derived from similar recordings made on conspecific animals having only one type of M/L pigment. Consistent with a random X-chromosome inactivation process, the average L:M cone weighting across the sample was close to unity. At the same time, there were significant individual variations in L:M cone proportions. The genesis of this variation and its implications for seeing are discussed.