Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T01:40:34.276Z Has data issue: false hasContentIssue false

Iso-orientation areas in the foveal cone mosaic

Published online by Cambridge University Press:  02 June 2009

Dietmar Pum
Affiliation:
Center for Ultrastructural Research, University of Agriculture, Vienna
Peter K. Ahnelt
Affiliation:
Department of General and Comparative Physiology, Medical School, University of Vienna
Markus Grasl
Affiliation:
University Eye Clinic, Medical School, University of Vienna

Abstract

The quality of the foveal cone mosaic in human and primate retinas is a basic parameter of spatial vision function. The present study uses digital-texture analysis procedures to analyze the crystalline order of inner segment sections containing the rod-free portions of foveal cone mosaics. Definition of the cone cross-sectional centers made possible by adequate preprocessing allows precise mapping of lattice vertices and differentiation of hexagonal positions by procedures for direct neighbor recongnition.

In a further step, the existence of subunits within the hexagonal areas is revealed by the determination of axial orientation. The lattice of the subunits is characterized by similar orientation and high positional correlation of its hexagonal units.

The axial orientation of the areas differs from that of neighboring subunits by angular shifts of 10–15 deg and linear series of nonhexagonal irregularities demarcate the borders. Although larger patches with continuous hexagonal order occur in the surrounding rod-free regions, elevated degrees of disorder (30%) are found within the foveolar center (ca. 300 cones). Analysis of a mosaic showing labeled B cones (Szél et al., 1988) demonstrates that lattice disorder is in part associated with the blue cone subpopulation. The foveal mosaic from a glaucomatuous eye reveals severe lattice degradation throughout the rod-free zone, presumably due to extensive receptor loss.

The low-frequency superstructure results in local sets of sampling grids (5'–8') with differing orientational bias. Besides a horizontal/vertical difference of mosaic compression (ca. 1:1.15), the present analysis gives no hints for the existence of systematic meridional anisotropies at the receptor mosaic level. The study reveals a discontinuous organization of the foveal mosaic and points to possible sources for the induction and location of lattice disorder.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahumada, A.J. Jr. & Poirson, A. (1987). Cone sampling array models. Journals of the Optical Society of America A 4, 14931502.CrossRefGoogle ScholarPubMed
Ahnelt, P.K. & Pflug, R. (1986). Telodendrial contacts between foveolar cone pedicles in the human retina. Experientia 42, 298300.CrossRefGoogle ScholarPubMed
Ahnelt, P.K., Kolb, H. & Pflug, R. (1987). Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina. Journal of Comparative Neurology 255, 1834.CrossRefGoogle ScholarPubMed
Anhelt, P. & Pum, D. (1987) A low frequency component of the human foveal cone mosaic. Investigative Ophthalmology & Visual Science 29 (Suppl.), 262.Google Scholar
Bossomaier, T.R.J., Snyder, A.W. & Hughes, A. (1985). Irregularity and aliasing: Solution? Vision Research 25, 145147.CrossRefGoogle ScholarPubMed
Coletta, N.J. & Williams, D.R. (1987) Psychophysical estimate of extrafoveal cone spacing. Journal of the Optical Society of America A 4, 15031513.CrossRefGoogle ScholarPubMed
Curcio, C.A., Sloan, K.R., Packer, O., Hendrickson, A. & Kalinia, R.E., (1987). Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 236, 579582.CrossRefGoogle ScholarPubMed
Geisler, W.S. (1984). Physical limits of visual acuity and hyperacuity. Journal of the Optical Society of America, A, 1, 775782.CrossRefGoogle ScholarPubMed
Hahn, T. (1983). Space group symmetry. In International Tables for Crystallography, Vol. 4, p. 97. Dordrecht-Boston: D. Reidel.Google Scholar
Heeley, D.W. & Timney, B. (1989). Spatial frequency discrimination at different orientations. Vision Research 29, 12211228.CrossRefGoogle ScholarPubMed
Hendrickson, A.E. & Yuodelis, C. (1984). The morphological development of the human fovea. Ophthalmology 91, 603612.CrossRefGoogle ScholarPubMed
Hirsch, J. & Curcio, C. (1989). The spatial resolution capacity of human foveal retina. Vision Research 29, 10951101.CrossRefGoogle ScholarPubMed
Hirsch, J. & Hylton, R. (1984 a). Quality of the primate photoreceptor lattice and limits of spatial vision. Vision Research 24, 347355.CrossRefGoogle ScholarPubMed
Hirsch, J. & Hylton, R. (1984 b). Orientation dependence of visual hyperacuity contains a component with hexagonal symmetry. Journal of the Optical Society of America A 1, 300308.CrossRefGoogle ScholarPubMed
Hirsch, J. & Miller, W.H. (1987). Does cone positional disorder limit resolution? Journal of the Optical Society of America A 4, 14811492.CrossRefGoogle ScholarPubMed
Marc, R.E. & Sperling, H.G. (1977). Chromatic organization of primate cones. Science 143, 184186.Google Scholar
Miller, W.H. & Bernard, G.D. (1983). Averaging over the foveal receptor aperture curtails aliasing. Vision Research 23, 13651369.CrossRefGoogle ScholarPubMed
DeMonasterio, F.M., McCrane, E.P., Newlander, J.K. & Schein, S.J. (1985). Density profile of blue-sensitive cones along the horizontal meridian of Macaque retina. Investigative Ophthalmology & Visual Science 26, 289302.Google Scholar
Ohzu, H., Enoch, J.M. & O'Hair, J.C. (1972). Optical modulation by the isolated retina and retinal receptors. Vision Research 12, 231–24.CrossRefGoogle Scholar
Packer, O., Hendrickson, A. & Curcio, C. (1989). Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina). Journal of Comparative Neurology 288, 165183.CrossRefGoogle ScholarPubMed
Perry, V.H. & Cowey, A. (1985). The ganglion cell and cone distributions in the monkey's retina: implication for central magnification factors. Vision Research 25, 17951810.CrossRefGoogle ScholarPubMed
Perry, V.H. & Cowey, A. (1988). The length of fibres of Henle in the retina of macaque monkey: implications for vision. Neuroscience 25, 225236.CrossRefGoogle ScholarPubMed
Polyak, S.L. (1941). The Retina. Chicago: University of Chicago Press.Google Scholar
PÖppe, C.H. (1989). Graphische Darstellung komplex–analytischer Funktionen. Spektrum der Wissenschaft 8, 813.Google Scholar
Provis, J.M., Van Driel, D., Billson, F.A. & Russel, P. (1985). Development of the human retina: patterns of cell distribution and redistribution in the ganglion cell layer. Journal of Comparative Neurology 233, 429451.CrossRefGoogle ScholarPubMed
Szél, A., Diamantstein, T. & RÖhlich, P. (1988). Identification of the blue-sensitive cones in the mammalian retina by anti-visual pigment antibody. Journal of Comparative Neurology 273, 593602.CrossRefGoogle ScholarPubMed
Warwick, R. (1976). Eugene Wolff's Anatomy of the Eye and Orbit. 7th ed.Philadelphia, Toronto: W.B. Saunders.Google Scholar
Westheimer, G., (1972). Optical properties of vertebrate eyes. In: Handbook of Sensory Physiology, VII/II, ed. Fuortes, M.G.F., pp. 449482. Berlin: Springer Verlag.Google Scholar
Westheimer, G. (1981). Visual hyperacuity. In Progress in Sensory Physiology, I, ed. Ottoson, D., pp. 130, Berlin: Springer Verlag.Google Scholar
Williams, D.R. (1985). Aliasing in human foveal vision. Vision Research 25, 195205.CrossRefGoogle ScholarPubMed
Williams, D.R. (1986). Seeing through the photoreceptor mosaic. Trends in Neurosciences 9, 193198.CrossRefGoogle Scholar
Williams, D.R. (1988). Topography of the foveal cone mosaic in the living human eye. Vision Research 28, 433454.CrossRefGoogle ScholarPubMed
Willliams, D.R. & Coletta, N.J.C. (1987). Cone spacing and the visual resolution limit. Journal of the Optical Society of America A 4, 15141523.CrossRefGoogle Scholar
Yellot, J.I. Jr. (1982). Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing. Vision Research, 22, 12051210.CrossRefGoogle Scholar
Yellot, J.I. Jr., (1983). Spectral consequences of photoreceptor sampling in the rhesus retina. Science 221, 382385.CrossRefGoogle Scholar