Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T20:54:48.984Z Has data issue: false hasContentIssue false

Inward rectification in Limulus ventral photoreceptors

Published online by Cambridge University Press:  02 June 2009

Cynthia L. Phillips
Affiliation:
Institute of Molecular Biology, University of Oregon, Eugene
Juan Bacigalupo
Affiliation:
Departmento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
Peter M. O'Day
Affiliation:
Institute of Neuroscience, University of Oregon, Eugene

Abstract

We examined inward rectification in Limulus ventral photoreceptors using the two-microelectrode voltage clamp. Hyperpolarization in the dark induced an inward current whose magnitude was distinctly dependent on extracellular K+ concentration, [K+0]. The [K+0] dependence resembled the characteristic [K+0] dependence of other inward rectifiers. The inward current was not dependent on extracellular Ca2+ or Na+, and it was unaffected by intracellular injection of Cl. The hyperpolarization induced currents had two phases, an early nearly instantaneous phase and a slowly developing late phase. The currents were sensitive to extracellular barium and cesium. In voltage-pulse experiments, the magnitudes of the inwardly rectifying currents were variable from cell to cell, with some cells exhibiting negligible inward currents. Large hyperpolarizations (to membrane potentials more negative than about – 140 mV) caused unstable inward current recordings, irreversible desensitization, and irreversible elevation of intracellular Ca2+ concentration. The inward rectifier provides negative feedback by tending to depolarize the cell (with inward current) in response to hyperpolarization. We suggest that the inward rectifier reduces the amount of hyperpolarization that would otherwise be generated by electrogenic processes. This feature would restrict the dynamic voltage range of the photoreceptors at very hyperpolarized potentials.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R.H. (1969). Refraction in muscle membrane. Progress in Biophysics and Molecular Biology 19, 340369.CrossRefGoogle Scholar
Attwell, D. & Wilson, M. (1980). Behaviour of the rod network in the tiger salamander retina mediated by membrane properties of individual rods. Journal of Physiology 309, 287315.CrossRefGoogle ScholarPubMed
Bader, C.R. & Bertrand, D. (1984). Effect of changes in intra- and extracellular sodium on the inward (anomalous) rectification in salamander photoreceptors. Journal of Physiology 347, 611631.CrossRefGoogle ScholarPubMed
Bader, C.R., Macleish, P.R. & Schwartz, E.A. (1979). A voltage-clamp study of the light response in solitary rods of the tiger salamander. Journal of Physiology 296, 126.CrossRefGoogle ScholarPubMed
Benson, J.A. & Levitan, I.B. (1983). Serotonin increases an anomalously rectifying current in Aplysia neuron R15. Proceedings of the National Academy of Sciences of the U.S.A. 80, 35223525.CrossRefGoogle ScholarPubMed
Brown, J.E. & Lisman, J.E. (1972). An electrogenic sodium pump in Limulus vental photoreceptor cells. Journal of General Physiology 59, 720740.CrossRefGoogle Scholar
Brown, J.E., Brown, P.K. & Pinto, L.H. (1977). Detection of light-induced changes of intracellular ionized calcium concentration in Limulus ventral photoreceptors using arsenazo III. Journal of Physiology 267, 299320.CrossRefGoogle ScholarPubMed
Chenoy-Marchais, D. (1982). A Cl conductance activated by hyperpolarization in Aplysia neurones. Nature 299, 359361.CrossRefGoogle ScholarPubMed
Chinn, K. & Lisman, J.E. (1984). Light reduces the voltage-dependent inward current in Limulus ventral photoreceptors. Journal of General Physiology 84, 463473.CrossRefGoogle ScholarPubMed
DiFrancesco, D. & Tortora, P. (1991). Direct activation of cardiac pacemaker channels by intracellular cyclic-AMP. Nature 351, 145147.CrossRefGoogle ScholarPubMed
Fain, G.L., Quandt, F.N., Bastian, B.L. & Gerschenfeld, H.M. (1978). Contribution of a caesium-sensitive conductance increase to rod response. Nature 272, 467469.CrossRefGoogle Scholar
Fain, G.L. & Lisman, J.E. (1981). Membrane conductances of photoreceptors. Progress in Biophysics and Molecular Biology 37, 91147.CrossRefGoogle ScholarPubMed
Fein, A. & Tsacopoulos, M. (1988). Light-induced oxygen consumption in Limulus ventral photoreceptors does not result from a rise in the intracellular sodium concentration. Journal of General Physiology 91, 515527.CrossRefGoogle Scholar
Hagiwara, S. & Jaffe, L.A. (1979). Electrical properties of egg cell membranes. Annual Reviews of Biophysics and Bioengineering 8, 385416.CrossRefGoogle ScholarPubMed
Hagiwara, S., Miyazaki, S., Moody, W. & Patlak, J. (1978). Blocking effects of barium and hydrogen ions on the potassium current during anomalous rectification in the starfish egg. Journal of Physiology 279, 167185.CrossRefGoogle ScholarPubMed
Hagiwara, S., Miyazaki, S. & Rosenthal, N.P. (1976). Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. Journal of General Physiology 76, 621638.CrossRefGoogle Scholar
Hardie, R.C., Voss, D., Pongs, O. & Laughlin, S.B. (1991). Novel potassium channels encoded by the shaker locus in Drosophila photoreceptors. Neuron 6, 477486.CrossRefGoogle ScholarPubMed
Hayashi, H. & Fishman, H.M. (1988). Inward rectifier K-channel kinetics from analysis of the complex conductance of Aplysia neuronal membrane. Biophysical Journal 53, 747757.CrossRefGoogle ScholarPubMed
Hille, B. (1984). Ionic Channels of Excitable Membranes. Sunderland, Massachusetts: Sinauer Associate Inc.Google Scholar
Hille, B. & Schwartz, W. (1978). Potassium channels as multi-ion single-file pores. Journal of General Physiology 72, 409442.CrossRefGoogle ScholarPubMed
Hutter, O.F. & Noble, D. (1960). Rectifying properties of heart muscle, Nature 188, 495.CrossRefGoogle ScholarPubMed
Kandel, E. & Tauc, L. (1964). An anomalous form of rectification in a molluscan central neurone. Nature 202, 13391341.Google Scholar
Katz, B. (1949). Les constantes electriques de la membrane du muscle. Archives of Science and Physiology 3, 285300.Google Scholar
Leonard, R.J. & Lisman, J.E. (1981). Light modulates voltage-dependent potassium channels in Limulus ventral photoreceptors. Science 212, 12731275.CrossRefGoogle ScholarPubMed
Lisman, J.E. & Brown, J.E. (1971). Two light-induced processes in the photoreceptor cells of Limulus ventral eye. Journal of General Physiology 58, 544561.CrossRefGoogle ScholarPubMed
Lisman, J.E. & Brown, J.E. (1972). The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors. Journal of General Physiology 59, 701719.CrossRefGoogle ScholarPubMed
Lisman, J.E., Fain, G.L. & O'Day, P.M. (1982). Voltage-dependent conductances in Limulus ventral photoreceptors. Journal of General Physiology 79, 187209.CrossRefGoogle ScholarPubMed
Millecchia, R. & Mauro, A. (1969). The ventral photoreceptor cells of Limulus. II. The basic photoresponse. Journal of General Physiology 54, 310330.CrossRefGoogle ScholarPubMed
Nakajima, S., Iwasaki, S. & Obata, K. (1962). Delayed rectification and anomalous rectification in frog's skeletal muscle membrane. Journal of General Physiology 46, 97115.CrossRefGoogle ScholarPubMed
Nasi, E. (1991). Two light-dependent conductances in Lima rhabdomeric photoreceptors. Journal of General Physiology 97, 5572.CrossRefGoogle ScholarPubMed
Noble, D. (1979). The Initiation of the Heartbeat. Oxford: Clarendon Press.Google Scholar
Noble, D. & Tsien, R.W. (1968). The kinetics and rectifier properties of the slow potassium current in cardiac purkinje fibers. Journal of Physiology 195, 185214.CrossRefGoogle Scholar
O'Day, P.M. (1991). Na+/Ca2+-exchange in invertebrate photoreceptors. In Second International Conference on Sodium/Calcium Exchange. Annals of the New York Academy of Sciences.Google Scholar
O'Day, P.M. & Gray-Keller, M.P. (1989). Evidence for electrogenic Na+/Ca2+ exchange in Limulus ventral photoreceptors. Journal of General Physiology 93, 473492.CrossRefGoogle ScholarPubMed
O'Day, P.M., Gray-Keller, M.P. & Lonergan, M. (1991). Physiological roles of Na+/Ca2+ exchange in Limulus ventral photoreceptors. Journal of General Physiology 97, 369391.CrossRefGoogle ScholarPubMed
O'Day, P.M., Lisman, J.E. & Goldring, M. (1982). Functional significance of voltage-dependent conductances in Limulus ventral photoreceptors. Journal of General Physiology 79, 211232.CrossRefGoogle ScholarPubMed
O'Day, P.M. & Phillips, C.L. (1991). Effects of external lithium on the physiology of Limulus ventral photoreceptors. Visual Neuroscience 7, 251258.CrossRefGoogle ScholarPubMed
Pepose, J.S. & Lisman, J.E. (1978). Voltage-sensitive potassium channels in Limulus ventral photoreceptors. Journal of General Physiology 71, 101120.CrossRefGoogle ScholarPubMed
Rakowski, R.F., Gadsby, D.C. & DeWeer, P. (1989). Stoichiometry and voltage-dependence of the sodium pump in voltage-clamped squid giant axon. Journal of General Physiology 93, 903941.CrossRefGoogle Scholar
Stanfield, P.R. (1983). Tetraethylammonium ions and potassium permeability of excitable cells. Reviews of Physiology and Biochemical Pharmacology 97, 167.Google ScholarPubMed
Thompson, S.H. & Aldrich, R.W. (1980). Membrane Potassium Channels in the Cell Surface and Neuronal Function, ed. Cotman, C.W., Poste, G. & Nicolson, G.L. pp. 4985. Amsterdam: Elsevier/North-Holland Biomedics Press.Google Scholar