Published online by Cambridge University Press: 02 June 2009
The spatial region involved in vernier acuity (integration region) was behaviorally determined in cats and compared with published human data and cortical scaling parameters for the two species. Integration region was estimated from vernier thresholds obtained with: (1) gaps of various sizes between the contiguous ends of the offset contours (gap effects); and (2) irrelevant contours placed at various distances from the vernier offset (interference effects). The gap studies showed that thresholds decreased as the gap grew from 0 to 4–7 min but then increased progressively with separations greater than 7 min. In the interference studies, thresholds were increased 2–6 times when the irrelevant contours were located within 40 min of the offset. Comparing these data with available human measures showed large species differences. Converting the interference distances for both species into cortical distances using published estimates of cortical magnification factor did not resolve the discrepancy. However, a comparison of the cat data with published human data, taken at an eccentricity at which the estimated human cortical magnification factor equals that of the cat, i.e. 7 deg, showed the effects of gap size and interference distance on vernier thresholds to be remarkably similar between the two species. This similarity supports the hypothesis that positional acuity depends upon mechanisms in striate cortex, and also suggests that such acuity may be mediated by a generic neural mechanism common to mammals.