Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T04:21:12.111Z Has data issue: false hasContentIssue false

Immunological demonstration of Gq-protein in Limulus photoreceptors

Published online by Cambridge University Press:  02 June 2009

Marlies Dorlöchter
Affiliation:
Institut für Biologie II, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen, Germany
Monika Klemeit
Affiliation:
Institut für Biologie II, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen, Germany
Hennig Stieve
Affiliation:
Institut für Biologie II, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen, Germany

Abstract

The phototransduction cascade in invertebrates involves the coupling of rhodopsin activation to the action of the enzyme phospholipase C. This step is performed by G-proteins. An antibody against the α-subunit of a mouse Gq type G-protein recognized protein bands in Western blots of lateral eye and ventral nerve photoreceptors of Limulus. The protein bands had an apparent molecular mass of about 42 kDa. The antibody also recognized protein bands of a similar molecular mass in immunoblots of brain and intestine tissue. Immunoreactivity was found in lateral eye frozen sections where it was confined to the rhabdom region. When the antibody was applied to ultrathin sections of ventral nerve photoreceptors, the highest density of labeling was found on the rhabdomeral microvilli, but gold particles were also scattered in the cytoplasm. We conclude that a G-protein of the type Gq participates in the phototransduction of Limulus.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bentrop, J. & Paulsen, R. (1986). Light-modulated ADP-ribosylation, protein phosphorylation and protein binding in isolated fly photoreceptor membranes. European Journal of Biochemistry 161, 6167.CrossRefGoogle ScholarPubMed
Bhatia, J., Davies, A., Gaudoin, J.B. & Saibil, H.R. (1996). Rhodopsin, Gq and phospholipase C activation in cephalopod photoreceptors. Journal of Photochemistry and Photobiology 19, 1924.CrossRefGoogle Scholar
Blumenfeld, A., Erusalimsky, J., Heichal, O., Selinger, Z. & Minke, B. (1985). Light-activated guanosinetriphosphatase in Musca eye membranes resembles the prolonged depolarizing afterpotential in photoreceptor cells. Proceedings of the National Academy of Sciences of the U.S.A. 82, 71167120.CrossRefGoogle ScholarPubMed
Brown, J.E., Combs, A., Ackermann, K. & Malbon, C.C. (1991). Light-induced GTPase activity and GTP[-λS] binding in squid retinal photoreceptors. Visual Neuroscience 7, 589595.CrossRefGoogle ScholarPubMed
Calhoon, R., Tsuda, M. & Ebrey, T.G. (1980). A light-activated GTPase from Octopus photoreceptors. Biochemical and Biophysical Research Communications 94, 14521457.CrossRefGoogle ScholarPubMed
Calman, B.G. & Chamberlain, S.C. (1982). Distinct lobes of Limulus ventral photoreceptors II. Structure and ultrastructure. Journal of General Physiology 80, 839862.CrossRefGoogle ScholarPubMed
Contzen, K. & Nagy, K. (1995). Current components stimulated by different G-proteins in Limulus ventral photoreceptor. Neuroreport 6, 19051908.CrossRefGoogle ScholarPubMed
Contzen, K., Richter, K.-H. & Nagy, K. (1995). Selective inhibition of the phospholipase C pathway blocks one light-activated current component in Limulus photoreceptor. Journal of Comparative Physiology A 177, 601610.CrossRefGoogle Scholar
Deckert, A., Nagy, K., Helrich, C.S. & Stieve, H. (1992). Three components in the light-induced current of the Limulus ventral photoreceptor. Journal of Physiology 453, 6996.CrossRefGoogle ScholarPubMed
Devary, O., Heichal, O., Blumenfeld, A., Cassel, D., Suss, E., Barash, S., Rubinstein, C.T., Minke, B. & Selinger, Z. (1987). Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proceedings of the National Academy of Sciences of the U.S.A. 84, 69396943.CrossRefGoogle ScholarPubMed
Dorlöchter, M., Klemeit, M. & Stieve, H. (1996). Gq protein in Limulus photoreceptors. Proceedings of the 24th Göttingen Neurobiology Conference, p. 306.Google Scholar
Fein, A. (1986). Blockade of visual excitation and adaptation in Limulus photoreceptor by GDP-β-S. Science 232, 15431545.CrossRefGoogle ScholarPubMed
Fein, A. & Payne, R. (1989). Phototransduction in Limulus photoreceptors: Roles of calcium and inositol trisphosphate. In Facets of Vision, ed. Stavenga, D.G. & Hardie, R.C., pp. 173185. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Fyles, J.M., Baverstock, J., Baer, K. & Saibil, H.R. (1991). Effects of calcium on light-activated GTP-binding proteins in squid photoreceptor membranes. Comparative Biochemistry and Physiology 98B, 215221.Google Scholar
Heide von der, W., Casaretto, M., Rack, M. & Stieve, H. (1996). Interaction of GTP-binding protein Gq from Sepia officinalis with illuminated rhodopsin bound to concanavalin A. Journal of Photochemistry and Photobiology 19, 2532.CrossRefGoogle Scholar
Herman, K.G. (1991). Light-stimulated rhabdom turnover in Limulus ventral photoreceptors maintained in vitro. Journal of Comparative Neurology 303, 1121.CrossRefGoogle ScholarPubMed
Kass, L. & Renninger, G.H. (1988). Circadian change in function of Limulus ventral photoreceptors. Visual Neurosciene 1, 311.CrossRefGoogle ScholarPubMed
Lee, Y.J., Dobbs, M.B., Verardi, M L. & Hyde, D.R. (1990). DGG: A Drosophila gene encoding a visual system specific Gα molecule. Neuron 5, 889898.CrossRefGoogle Scholar
Malbon, C.C., Kaupp, U.B. & Brown, J.E. (1984). Limulus ventral photoreceptors contain a homologue of the α-subunit of mammalian Ns. FEBS Utters 172, 9194.CrossRefGoogle ScholarPubMed
Mumby, S.M., Kahn, R.A., Manning, D.R. & Gilman, A.G. (1986). Antisera of designed specificity for subunits of guanine nucleotide-binding regulatory proteins. Proceedings of the National Academy of Sciences of the U.S.A. 83, 265269.CrossRefGoogle ScholarPubMed
Munger, S.D., Schremser-Berun, J.-L., Brink, C.M. & Battelle, B.A. (1997). Molecular and immunological characterization of a Gq protein from ventral and lateral eyes of the horseshoe crab Limulus polyphe-mus. Invertebrate Neuroscience (in press).Google Scholar
Nagy, K. (1991). Biophysical processes in invertebrate photoreceptors: Recent progress and a critical overview based on Limulus photoreceptors. Quarterly Review of Biophysics 24, 165226.CrossRefGoogle Scholar
Nagy, K. (1993). Cyclic nucleotides and inositol trisphosphate activate different components of the receptor current in Limulus ventral nerve photoreceptors. Neuroscience Letters 152, 14.CrossRefGoogle ScholarPubMed
Nobes, C, Baverstock, J. & Saibil, H. (1992). Activation of the GTP-binding protein Gq by rhodopsin in squid photoreceptors. Biochemical Journal 287, 545548.CrossRefGoogle ScholarPubMed
Pottinger, J.D.D., Ryba, N.J.P., Keen, J.N. & Findlay, J.B.C. (1991). The identification and purification of the heterotrimeric GTP-binding protein from squid (Loligo forbesi) photoreceptors. Biochemical Journal 279, 323326.CrossRefGoogle ScholarPubMed
Robinson, P.R., Wood, S.F., Szuts, E.Z., Fein, A., Hamm, H.E. & Lis-man, J.E. (1990). Light-dependent GTP-binding proteins in squid photoreceptors. Biochemical Journal 272, 7985.CrossRefGoogle ScholarPubMed
Ryba, N.J.P., Findlay, J.B.C. & Reid, J.D. (1993). The molecular cloning of the squid (Loligo forbesi) visual Gq-α subunit and its expression in Saccharomyces cerevisiae. Biochemical Journal 292, 333341.CrossRefGoogle ScholarPubMed
Schraermeyer, U., Stieve, H. & Rack, M. (1995). Immunoelectron-microscopic study of G-protein distribution in photoreceptor cells of the cephalopod Sepia officinalis. Tissue and Cell 27, 317322.CrossRefGoogle ScholarPubMed
Schremser, J.-L., Munger, S.D. & Battelle, B.-A. (1995). Molecular and immunological characterization of a Gαq, from Limulus eyes. Society for Neuroscience Abstracts 21, 391.Google Scholar
Scott, K., Becker, A., Sun, Y., Hardy, R. & Zuker, C. (1995). Gqaprotein function in vivo: Genetic dissection of its role in photoreceptor cell physiology. Neuron 15, 919927.CrossRefGoogle ScholarPubMed
Shenker, A., Goldsmith, P., Unson, C.G. & Spiegel, A.M. (1991). The G protein coupled to the thromboxane A2 receptor in human platelets is a member of the novel Gq family. Journal of Biological Chemistry 266, 93099313.CrossRefGoogle Scholar
Stieve, H., Niemeyer, B., Aktories, K. & Hamm, H.E. (1992). Disturbing GTP-binding protein function through microinjection into the visual cell of Limulus. Zeitschrift für Naturforschung 47c, 915921.CrossRefGoogle Scholar
Strathmann, M. & Simon, M.I. (1990). G protein diversity: A distinct class of α subunits is present in vertebrates and invertebrates. Proceedings of the National Academy of Sciences of the U.S.A. 87, 91139117.CrossRefGoogle ScholarPubMed
Suzuki, T., Narita, K., Yoshihara, K., Nagai, K. & Kito, Y. (1993). Immunochemical detection of GTP-binding protein in cephalopod photoreceptors by anti-peptide antibodies. Zoological Science 10, 425430.Google ScholarPubMed
Suzuki, T., Terakita, A., Narita, K., Nagai, K., Tsukahara, Y. & Kito, Y. (1995). Squid photoreceptor phospholipase C is stimulated by membrane Gqα but not by soluble Gqα. FEBS Letters 377, 333337.Google Scholar
Taylor, S.J., Chae, H.Z., Rhee, S.G. & Exton, J.H. (1991). Activation of the β1 isozyme of phospholipase C by α subunits of the Gq class of G proteins. Nature 350, 516518.CrossRefGoogle Scholar
Terakita, A., Hariyama, T., Tsukahara, Y., Katsukura, Y. & Tashiro, H. (1993). Interaction of GTP-binding protein Gq with photoactivated rhodopsin in the photoreceptor membranes of crayfish. FEBS Letters 330, 197200.CrossRefGoogle ScholarPubMed
Tsuda, M. & Tsuda, T. (1990). Two distinct light regulated G-proteins in octopus photoreceptors. Biochimica Biophysica Acta 1052, 204210.CrossRefGoogle ScholarPubMed
Vandenberg, C.A. & Montal, M. (1984). Light-regulated biochemical events in invertebrate photoreceptors. 1. Light-activated guanosinetri-phosphatase, guanine nucleotide binding, and cholera toxin catalyzed labeling of squid photoreceptor membranes. Biochemistry 23, 23392347.CrossRefGoogle ScholarPubMed