Published online by Cambridge University Press: 02 June 2009
A large population of amacrine cells in the retina are thought to use GABA as an inhibitory neurotransmitter in their synaptic interactions within the inner plexiform layer. However, little is known about their synaptic targets; the neurons that express the receptors for GABA have not been clearly identified. Recently, the GABAA receptor has been isolated and antibodies have been raised against it. These antibodies have proven useful for the immunocytochemical localization of the receptor, and two brief reports describing the distribution of GABAA receptor immunoreactivity in the retina have appeared (Richards et al., 1987; Mariani et al., 1987). We used a monoclonal antibody (62–3G1) against the GABAA receptor to study the retina of the New World primate Saimiri sciureus.
Labeled somata were found in the inner nuclear layer (INL) and ganglion cell layer (GCL). The staining was confined to what appeared to be the cell's plasmalemma and small cytoplasmic granules. Most of the labeled neurons in the INL had small somata (5–7 μm in diameter) located at the vitreal edge of the layer. They arborized in two laminae (approximately 2 and 4) of inner plexiform layer (IPL). Ventral to the optic disc (2.5 mm) they comprised 29% of the cells present. A few of the labeled neurons appeared to be interplexiform cells or flat bipolar cells, with labeled processes that extended into both the IPL and the inner half of the outer plexiform layer. In the GCL, the labeled somata were among the largest present (13–20 μm in diameter), and 2.5 mm ventral to the optic disc they made up 15% of the cells present. Experiments in which immunoreactive somata were retrogradely labeled following the injection of fluorescent tracers into the optic tract provided a conclusive demonstration that some of the immunoreactive somata were ganglion cells. The antibody often labeled their axons in the optic fiber layer. This suggests that the GABAA receptors are transported anterogradely to the retinal terminal fields. The dendrites of the immunoreactive ganglion cells extended into the 2 laminae of labeled processes in the IPL, and their primary dendritic arbors were, at any given eccentricity, quite similar in appearance. This homogeneity suggests that they comprise a particular subset of the ganglion cells.
Sections simultaneously labeled with the monoclonal antibody against the GABAA receptor and antisera against either L-glutamic acid decarboxylase (GAD) or GABA revealed that the GAD/GABA was distributed much more widely in the IPL than the GABAA receptor. This variance may reflect either the presence of other, perhaps GABAB, receptors in the IPL or GABA in portions of the IPL where it is ineffective as a neurotransmitter.