Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-19T03:20:40.106Z Has data issue: false hasContentIssue false

Hyper-vision in a patient with central and paracentral vision loss reflects cortical reorganization

Published online by Cambridge University Press:  22 January 2004

CLARA CASCO
Affiliation:
Dipartimento di Psicologia Generale, Universita' di Padova, Italy
GIANLUCA CAMPANA
Affiliation:
Dipartimento di Psicologia Generale, Universita' di Padova, Italy Department of Experimental Psychology, University of Oxford, UK
ALBA GRIECO
Affiliation:
Dipartimento di Psicologia Generale, Universita' di Padova, Italy
SILVANA MUSETTI
Affiliation:
Dipartimento di Psicologia Generale, Universita' di Padova, Italy
SALVATORE PERRONE
Affiliation:
Dipartimento di Scienze Neurologiche e Psichiatriche, Clinica Oculistica, Universita' di Padova, Italy

Abstract

SM, a 21-year-old female, presents an extensive central scotoma (30 deg) with dense absolute scotoma (visual acuity = 10/100) in the macular area (10 deg) due to Stargardt's disease. We provide behavioral evidence of cortical plastic reorganization since the patient could perform several visual tasks with her poor-vision eyes better than controls, although high spatial frequency sensitivity and visual acuity are severely impaired. Between 2.5-deg and 12-deg eccentricities, SM presented (1) normal acuity for crowded letters, provided stimulus size is above acuity thresholds for single letters; (2) a two-fold sensitivity increase (d-prime) with respect to controls in a simple search task; and (3) largely above-threshold performance in a lexical decision task carried out randomly by controls. SM's hyper-vision may reflect a long-term sensory gain specific for unimpaired low spatial-frequency mechanisms, which may result from modifications in response properties due to practice-dependent changes in excitatory/inhibitory intracortical connections.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahissar, M. & Hochstein, S. (1993). Attentional control of early perceptual learning. Proceedings of the National Academy of Sciences of the U.S.A. 90(12), 57185722.CrossRefGoogle Scholar
Ahissar, M. & Hochstein, S. (1996). Learning pop-out detection: Specificities to stimulus characteristics. Vision Research 36(21), 34873500.CrossRefGoogle Scholar
Ahissar, M. & Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning. Nature 387(6631), 401406.CrossRefGoogle Scholar
Altpeter, M.M. & Trauzettel-Klosinski, S. (2000). The importance of sustained attention for patients with maculopathies. Vision Research 40, 15391547.CrossRefGoogle Scholar
Andrade, M.A., Muro, E.M., & Moran, F. (2001). Simulation of plasticity in the adult visual cortex. Biological Cybernetics 84(6), 445451.CrossRefGoogle Scholar
Beard, B.L., Levi, D.M., & Reich, L.N. (1995). Perceptual learning in parafoveal vision. Vision Research 35(12), 16791690.CrossRefGoogle Scholar
Braun, C., Weber, J., Schiefer, U., Skalej, M., & Dietrich, T. (2001). Hyperexcitatory activity in visual cortex in homonymous hemianopia after stroke. Clinical Neurophysiology 112(2), 336343.CrossRefGoogle Scholar
Burke, W. (1999). Psychophysical observations concerned with a foveal lesion (macular hole). Vision Research 39, 24212427.CrossRefGoogle Scholar
Calford, M.B. (2002). Dynamic representational plasticity in sensory cortex. Neuroscience 111(4), 709738.CrossRefGoogle Scholar
Campana, G. & Casco, C. (2003). Learning in combined-features search: Specificity to orientation. Perception and Psychophysics 65, 11971207.CrossRefGoogle Scholar
Casco, C. & Campana, G. (2001). Stimulus specific dynamics of learning in conjunction search tasks. Visual Cognition 8, 145162.CrossRefGoogle Scholar
Chino, Y.M., Kaas, J.H., Smith, E.L., III, Langston, A.L., & Cheng, H. (1992). Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina. Vision Research 32(5), 789796.CrossRefGoogle Scholar
Cummings, R.W., Whittaker, S.G., Watson, G.R., & Budd, J.M. (1985). Scanning characters and reading with a central scotoma. American Journal of Optometry and Physiological Optics 62(12), 833843.CrossRefGoogle Scholar
Darian-Smith, C. & Gilbert, C.D. (1995). Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated. Journal of Neuroscience 15, 16311647.Google Scholar
DeAngelis, G.C., Anzai, A., Ohzawa, I., & Freeman, R.D. (1995). Receptive field structure in the visual cortex: Does selective stimulation induce plasticity? Proceedings of the National Academy of Sciences of the U.S.A. 92(21), 96829686.CrossRefGoogle Scholar
De Mauro, T. (1991). Dizionario di base della lingua Italiana (Ed.). Roma: Editori Riuniti, 2a ed.
De Weerd, P., Gattass, R., Desimone, R., & Ungerleider, L.G. (1995). Responses of cells in monkey visual cortex during perceptual filling-in of an artificial scotoma. Nature 377(6551), 731734.CrossRefGoogle Scholar
Dreher, B., Burke, W., & Calford, M.B. (2001). Cortical plasticity revealed by circumscribed retinal lesions or artificial scotomas. Progress in Brain Research 134, 217246.CrossRefGoogle Scholar
Eyding, D., Schweigart, G., & Eysel, U.T. (2002). Spatio-temporal plasticity of cortical receptive fields in response to repetitive visual stimulation in the adult cat. Neuroscience 112(1), 195215.CrossRefGoogle Scholar
Jacobs, A.M., Nazir, T.A., & Heller, O. (1989). Perception of lowercase letters in peripheral vision: A discrimination matrix based on saccade latencies. Perception and Psychophysics 46(1), 95102.CrossRefGoogle Scholar
Kalarickal, G.J. & Marshall, J.A. (1999). Models of receptive-field dynamics in visual cortex. Visual Neuroscience 16(6), 10551081.CrossRefGoogle Scholar
Kalarickal, G.J. & Marshall, J.A. (2002). Rearrangement of receptive field topography after intracortical and peripheral stimulation: The role of plasticity in inhibitory pathways. Network 13(1), 140.CrossRefGoogle Scholar
Kapadia, M.K., Gilbert, C.D., & Westheimer, G. (1994). A quantitative measure for short-term cortical plasticity in human vision. Journal of Neuroscience 14(1), 451457.Google Scholar
Karni, A. & Sagi, D. (1991). Where practice makes perfect in texture discrimination: Evidence for primary visual cortex plasticity. Proceedings of the National Academy of Sciences of the U.S.A. 88(11), 49664970.CrossRefGoogle Scholar
Karni, A. & Sagi, D. (1993). The time course of learning a visual skill. Nature 365(6443), 250252.CrossRefGoogle Scholar
Legge, G.E., Rubin, G.S., Pelli, D.G., & Schleske, M.M. (1985). Psychophysics of reading—II. Low vision. Vision Research 25(2), 253265.CrossRefGoogle Scholar
Mitra, S. (1985). Spatial contrast sensitivity in macular disorder. Documenta Ophthalmologica 59(3), 247267.CrossRefGoogle Scholar
Morgan, M.J., Ward, R.M., & Castet, E. (1998). Visual search for a tilted target: Tests of spatial uncertainty models. Quarterly Journal of Experimental Psychology A 51(2), 347370.CrossRefGoogle Scholar
Palmer, J. (1994). Set-size effects in visual search: The effect of attention is independent of the stimulus for simple tasks. Vision Research 34(13), 17031721.CrossRefGoogle Scholar
Peli, E., Goldstein, R.B., Young, G.M., Trempe, C.L., & Buzney, S.M. (1991). Image enhancement for the visually impaired. Simulations and experimental results. Investigative Ophthalmology and Visual Science 32(8), 23372350.Google Scholar
Pettet, M.W. & Gilbert, C.D. (1992). Dynamic changes in receptive-field size in cat primary visual cortex. Proceedings of the National Academy of Sciences of the U.S.A. 89(17), 83668370.CrossRefGoogle Scholar
Raasch, T.W. (1992). Quantitative model of corneal astigmatism from topographic data. In Noninvasive Assessment of the Visual System Technical Digest, 3, 2427.Google Scholar
Ramachandran, V.S. & Gregory, R.L. (1991). Perceptual filling in of artificially induced scotomas in human vision. Nature 350(6320), 699702.CrossRefGoogle Scholar
Safran, A.B. & Landis, T. (1996). Plasticity in the adult visual cortex: Implications for the diagnosis of visual field defects and visual rehabilitation. Current Opinions in Ophthalmology 7(6), 5364.CrossRefGoogle Scholar
Safran, A.B., Achard, O., Duret, F., & Landis, T. (1999). The “thin man” phenomenon: A sign of cortical plasticity following inferior homonymous paracentral scotomas. British Journal of Ophthalmology 83(2), 137142.CrossRefGoogle Scholar
Schuchard, R.A. (1992). Contrast discrimination in observers with vision loss. OSA Technical Digest Series 1, 100103.Google Scholar
Schuchard, R.A. (1997). Retinal locus for fixation. In Scanning Laser Ophthalmoscopy Microscopy, and Tomography, ed. Elsner, A.E., pp. 110127. New York: Plenum Publishing.
Schuchard, R.A. & Fletcher, D.C. (1994). Preferred retinal locus: A review with applications in low vision rehabilitation. Ophthalmology Clinics of North America 7, 243256.Google Scholar
Schwartz, S., Maquet, P., & Frith, C. (2002). Neural correlates of perceptual learning: A functional MRI study of visual texture discrimination. Proceedings of the National Academy of Sciences of the U.S.A. 99(26), 1713717142.CrossRefGoogle Scholar
Sunness, J.S., Applegate, C.A., & Gonzalez-Baron, J. (2000). Improvement of visual acuity over time in patients with bilateral geographic atrophy from age-related macular degeneration. Retina 20(2), 162169.CrossRefGoogle Scholar
Xing, J. & Gerstein, G.L. (1994). Simulation of dynamic receptive fields in primary visual cortex. Vision Research 34(14), 19011911.CrossRefGoogle Scholar
Xing, J. & Heeger, D.J. (2000). Center-surround interactions in foveal and peripheral vision. Vision Research 40(22), 30653072.CrossRefGoogle Scholar