Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T00:40:29.583Z Has data issue: false hasContentIssue false

Human V4 and ventral occipital retinotopic maps

Published online by Cambridge University Press:  04 August 2015

JONATHAN WINAWER*
Affiliation:
Department of Psychology and Center for Neural Science, New York University, New York, New York 10003
NATHAN WITTHOFT
Affiliation:
Department of Psychology, Stanford University, Stanford, California 94305
*
*Address correspondence to: Jonathan Winawer. E-mail: [email protected]

Abstract

The ventral surface of the human occipital lobe contains multiple retinotopic maps. The most posterior of these maps is considered a potential homolog of macaque V4, and referred to as human V4 (“hV4”). The location of the hV4 map, its retinotopic organization, its role in visual encoding, and the cortical areas it borders have been the subject of considerable investigation and debate over the last 25 years. We review the history of this map and adjacent maps in ventral occipital cortex, and consider the different hypotheses for how these ventral occipital maps are organized. Advances in neuroimaging, computational modeling, and characterization of the nearby anatomical landmarks and functional brain areas have improved our understanding of where human V4 is and what kind of visual representations it contains.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdollahi, R.O., Kolster, H., Glasser, M.F., Robinson, E.C., Coalson, T.S., Dierker, D., Jenkinson, M., Van Essen, D.C. & Orban, G.A. (2014). Correspondences between retinotopic areas and myelin maps in human visual cortex. Neuroimage 99, 509524.CrossRefGoogle ScholarPubMed
Amano, K., Wandell, B.A. & Dumoulin, S.O. (2009) Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. Journal of Neurophysiology 102, 27042718.CrossRefGoogle ScholarPubMed
Arcaro, M.J., McMains, S.A., Singer, B.D. & Kastner, S. (2009). Retinotopic organization of human ventral visual cortex. The Journal of Neuroscience 29, 1063810652.CrossRefGoogle ScholarPubMed
Baldassano, C., Iordan, M.C., Beck, D.M. & Fei-Fei, L. (2012). Voxel-level functional connectivity using spatial regularization. Neuroimage 63, 10991106.CrossRefGoogle ScholarPubMed
Barlow, H.B. (1986). Why have multiple cortical areas? Vision Research 26, 8190.CrossRefGoogle ScholarPubMed
Benson, N.C., Butt, O.H., Brainard, D.H. & Aguirre, G.K. (2014). Correction of distortion in flattened representations of the cortical surface allows prediction of V1-V3 functional organization from anatomy. PLoS Computational Biology 10, e1003538.CrossRefGoogle ScholarPubMed
Benson, N.C., Butt, O.H., Datta, R., Radoeva, P.D., Brainard, D.H. & Aguirre, G.K. (2012). The retinotopic organization of striate cortex is well predicted by surface topology. Current Biology 22, 20812085.CrossRefGoogle ScholarPubMed
Bouvier, S.E., Cardinal, K.S. & Engel, S.A. (2008). Activity in visual area V4 correlates with surface perception. Journal of Vision 8, 28. 1–9.CrossRefGoogle ScholarPubMed
Bouvier, S.E. & Engel, S.A. (2006). Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cerebral Cortex 16, 183191.CrossRefGoogle ScholarPubMed
Brewer, A.A., Liu, J., Wade, A.R. & Wandell, B.A. (2005). Visual field maps and stimulus selectivity in human ventral occipital cortex. Nature Neuroscience 8, 11021109.CrossRefGoogle ScholarPubMed
Brouwer, G.J. & Heeger, D.J. (2009). Decoding and reconstructing color from responses in human visual cortex. The Journal of Neuroscience 29, 1399214003.CrossRefGoogle ScholarPubMed
Burkhalter, A., Felleman, D.J., Newsome, W.T. & Van Essen, D.C. (1986). Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex. Vision Research 26, 6380.CrossRefGoogle ScholarPubMed
Cohen, L., Dehaene, S., Naccache, L., Lehericy, S., Dehaene-Lambertz, G., Henaff, M.A. & Michel, F. (2000). The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123(Pt 2), 291307.CrossRefGoogle ScholarPubMed
Crespi, S., Biagi, L., d'Avossa, G., Burr, D.C., Tosetti, M. & Morrone, M.C. (2011). Spatiotopic coding of BOLD signal in human visual cortex depends on spatial attention. PLoS One 6, e21661.CrossRefGoogle ScholarPubMed
d'Avossa, G., Tosetti, M., Crespi, S., Biagi, L., Burr, D.C. & Morrone, M.C. (2007). Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nature Neuroscience 10, 249255.CrossRefGoogle ScholarPubMed
Dagli, M.S., Ingeholm, J.E. & Haxby, J.V. (1999). Localization of cardiac-induced signal change in fMRI. Neuroimage 9, 407415.CrossRefGoogle ScholarPubMed
Dale, A.M., Fischl, B. & Sereno, M.I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9, 179194.CrossRefGoogle ScholarPubMed
Dumoulin, S.O. & Hess, R.F. (2007). Cortical specialization for concentric shape processing. Vision Research 47, 16081613.CrossRefGoogle ScholarPubMed
Dumoulin, S.O. & Wandell, B.A. (2008). Population receptive field estimates in human visual cortex. Neuroimage 39, 647660.CrossRefGoogle ScholarPubMed
Engel, S.A., Glover, G.H. & Wandell, B.A. (1997). Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex 7, 181192.CrossRefGoogle ScholarPubMed
Engel, S.A., Rumelhart, D.E., Wandell, B.A., Lee, A.T., Glover, G.H., Chichilnisky, E.J. & Shadlen, M.N. (1994). fMRI of human visual cortex. Nature 369, 525.CrossRefGoogle ScholarPubMed
Epstein, R., Harris, A., Stanley, D. & Kanwisher, N. (1999). The parahippocampal place area: Recognition, navigation, or encoding? Neuron 23, 115125.CrossRefGoogle ScholarPubMed
Felleman, D.J. & Van Essen, D.C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1, 147.CrossRefGoogle ScholarPubMed
Gallant, J.L., Braun, J. & Van Essen, D.C. (1993). Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science 259, 100103.CrossRefGoogle ScholarPubMed
Goddard, E., Mannion, D.J., McDonald, J.S., Solomon, S.G. & Clifford, C.W. (2011). Color responsiveness argues against a dorsal component of human V4. Journal of Vision 11(4), 3.CrossRefGoogle ScholarPubMed
Goodale, M.A. & Milner, A.D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences 15, 2025.CrossRefGoogle ScholarPubMed
Grill-Spector, K. & Weiner, K.S. (2014). The functional architecture of the ventral temporal cortex and its role in categorization. Nature Reviews Neuroscience 15, 536548.CrossRefGoogle ScholarPubMed
Haak, K.V., Winawer, J., Harvey, B.M., Renken, R., Dumoulin, S.O., Wandell, B.A. & Cornelissen, F.W. (2012). Connective field modeling. Neuroimage 66C, 376384.Google Scholar
Hadjikhani, N., Liu, A.K., Dale, A.M., Cavanagh, P. & Tootell, R.B. (1998). Retinotopy and color sensitivity in human visual cortical area V8. Nature Neuroscience 1, 235241.CrossRefGoogle ScholarPubMed
Hadjikhani, N. & Tootell, R.B. (2000). Projection of rods and cones within human visual cortex. Human Brain Mapping 9, 5563.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Halgren, E., Dale, A.M., Sereno, M.I., Tootell, R.B., Marinkovic, K. & Rosen, B.R. (1999). Location of human face-selective cortex with respect to retinotopic areas. Human Brain Mapping 7, 2937.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Hansen, K.A., Kay, K.N. & Gallant, J.L. (2007). Topographic organization in and near human visual area V4. The Journal of Neuroscience 27, 1189611911.CrossRefGoogle ScholarPubMed
Harvey, B.M. & Dumoulin, S.O. (2011). The relationship between cortical magnification factor and population receptive field size in human visual cortex: Constancies in cortical architecture. The Journal of Neuroscience 31, 1360413612.CrossRefGoogle ScholarPubMed
Heinzle, J., Kahnt, T. & Haynes, J.D. (2011). Topographically specific functional connectivity between visual field maps in the human brain. Neuroimage 56, 14261436.CrossRefGoogle ScholarPubMed
Henschen, S.E. (1893). On the visual path and centre. Brain 16, 170180.CrossRefGoogle Scholar
Holmes, G. (1918). Disturbances of vision by cerebral lesions. The British Journal of Ophthalmology 2, 353384.CrossRefGoogle ScholarPubMed
Horton, J.C. & Hoyt, W.F. (1991a) Quadrantic visual field defects. A hallmark of lesions in extrastriate (V2/V3) cortex. Brain 114(Pt 4), 17031718.CrossRefGoogle ScholarPubMed
Horton, J.C. & Hoyt, W.F. (1991b). The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Archives of Ophthalmology 109, 816824.CrossRefGoogle ScholarPubMed
Inouye, T. (1909). Die Sehstörungen bei Schussverletzungen der kortikalen Sehsphäre: Nach Beobachtungen an Verwundeten der letzten japanischen Kriege: W. Engelmann.Google Scholar
Janssens, T., Zhu, Q., Popivanov, I.D. & Vanduffel, W. (2014) Probabilistic and single-subject retinotopic maps reveal the topographic organization of face patches in the macaque cortex. The Journal of Neuroscience 34, 1015610167.CrossRefGoogle ScholarPubMed
Jerde, T.A. & Curtis, C.E. (2013). Maps of space in human frontoparietal cortex. Journal of Physiology 107, 510516.Google ScholarPubMed
Jiang, Y., Zhou, K. & He, S. (2007). Human visual cortex responds to invisible chromatic flicker. Nature Neuroscience 10, 657662.CrossRefGoogle ScholarPubMed
Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional architecture of the mind. Proceedings of the National Academy of Sciences of the United States of America 107, 1116311170.CrossRefGoogle Scholar
Kanwisher, N., McDermott, J. & Chun, M.M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience 17, 43024311.CrossRefGoogle ScholarPubMed
Kay, K.N., Naselaris, T., Prenger, R.J. & Gallant, J.L. (2008). Identifying natural images from human brain activity. Nature 452, 352355.CrossRefGoogle ScholarPubMed
Kay, K.N., Weiner, K.S. & Grill-Spector, K. (2015). Attention reduces spatial uncertainty in human ventral temporal cortex. Current Biology 2, 595600.CrossRefGoogle Scholar
Kay, K.N., Winawer, J., Mezer, A. & Wandell, B.A. (2013a). Compressive spatial summation in human visual cortex. Journal of Neurophysiology 110, 481494.CrossRefGoogle ScholarPubMed
Kay, K.N., Winawer, J., Rokem, A., Mezer, A. & Wandell, B.A. (2013b). A two-stage cascade model of BOLD responses in human visual cortex. PLoS Computational Biology 9, e1003079.CrossRefGoogle ScholarPubMed
Klein, B.P., Harvey, B.M. & Dumoulin, S.O. (2014). Attraction of position preference by spatial attention throughout human visual cortex. Neuron 84, 227237.CrossRefGoogle ScholarPubMed
Kolster, H., Janssens, T., Orban, G.A. & Vanduffel, W. (2014). The retinotopic organization of macaque occipitotemporal cortex anterior to V4 and caudoventral to the middle temporal (MT) cluster. The Journal of Neuroscience 34, 1016810191.CrossRefGoogle Scholar
Kolster, H., Peeters, R. & Orban, G.A. (2010). The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. The Journal of Neuroscience 30, 98019820.CrossRefGoogle ScholarPubMed
Konen, C.S. & Kastner, S. (2008). Two hierarchically organized neural systems for object information in human visual cortex. Nature Neuroscience 11, 224231.CrossRefGoogle ScholarPubMed
Larsson, J. & Heeger, D.J. (2006). Two retinotopic visual areas in human lateral occipital cortex. The Journal of Neuroscience 26, 1312813142.CrossRefGoogle ScholarPubMed
Lee, A.T., Glover, G.H. & Meyer, C.H. (1995). Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic-resonance functional neuroimaging. Magnetic Resonance in Medicine 33, 745754.CrossRefGoogle ScholarPubMed
Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. (2001). Center-periphery organization of human object areas. Nature Neuroscience 4, 533539.CrossRefGoogle ScholarPubMed
Lister, W.T. & Holmes, G. (1916). Disturbances of vision from cerebral lesions, with special reference to the cortical representation of the macula. Proceedings of the Royal Society of Medicine 9, 5796.CrossRefGoogle Scholar
Liu, J. & Wandell, B.A. (2005). Specializations for chromatic and temporal signals in human visual cortex. The Journal of Neuroscience 25, 34593468.CrossRefGoogle ScholarPubMed
Lueck, C.J., Zeki, S., Friston, K.J., Deiber, M.P., Cope, P., Cunningham, V.J., Lammertsma, A.A., Kennard, C. & Frackowiak, R.S. (1989). The colour centre in the cerebral cortex of man. Nature 340, 386389.CrossRefGoogle ScholarPubMed
Lyon, D.C. & Connolly, J.D. (2012). The case for primate V3. Proceedings. Biological sciences / The Royal Society 279, 625633.CrossRefGoogle ScholarPubMed
Malach, R., Levy, I. & Hasson, U. (2002). The topography of high-order human object areas. Trends in Cognitive Sciences 6, 176184.CrossRefGoogle ScholarPubMed
Malach, R., Reppas, J.B., Benson, R.R., Kwong, K.K., Jiang, H., Kennedy, W.A., Ledden, P.J., Brady, T.J., Rosen, B.R. & Tootell, R.B. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences of the United States of America 92, 81358139.CrossRefGoogle ScholarPubMed
McKeefry, D.J. & Zeki, S. (1997). The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120(Pt 12), 22292242.CrossRefGoogle ScholarPubMed
Meadows, J.C. (1974a). The anatomical basis of prosopagnosia. Journal of Neurology, Neurosurgery, and Psychiatry 37, 489501.CrossRefGoogle ScholarPubMed
Meadows, J.C. (1974b). Disturbed perception of colours associated with localized cerebral lesions. Brain 97, 615632.CrossRefGoogle ScholarPubMed
Menon, R.S. (2002). Postacquisition suppression of large-vessel BOLD signals in high-resolution fMRI. Magnetic Resonance in Medicine 47, 19.CrossRefGoogle ScholarPubMed
Merriam, E.P., Gardner, J.L., Movshon, J.A. & Heeger, D.J. (2013) Modulation of visual responses by gaze direction in human visual cortex. The Journal of Neuroscience 33:98799889.CrossRefGoogle ScholarPubMed
Olman, C.A., Inati, S. & Heeger, D.J. (2007). The effect of large veins on spatial localization with GE BOLD at 3 T: Displacement, not blurring. Neuroimage 34, 11261135.CrossRefGoogle Scholar
Pasupathy, A. & Connor, C.E. (2002). Population coding of shape in area V4. Nature Neuroscience 5, 13321338.CrossRefGoogle ScholarPubMed
Pestilli, F., Yeatman, J.D., Rokem, A., Kay, K.N. & Wandell, B.A. (2014). Evaluation and statistical inference for human connectomes. Nature Methods 11, 10581063.CrossRefGoogle ScholarPubMed
Roe, A.W., Chelazzi, L., Connor, C.E., Conway, B.R., Fujita, I., Gallant, J.L., Lu, H. & Vanduffel, W. (2012). Toward a unified theory of visual area V4. Neuron 74, 1229.CrossRefGoogle Scholar
Rossion, B., Schiltz, C. & Crommelinck, M. (2003). The functionally defined right occipital and fusiform “face areas” discriminate novel from visually familiar faces. Neuroimage 19, 877883.CrossRefGoogle ScholarPubMed
Sereno, M.I., Dale, A.M., Reppas, J.B., Kwong, K.K., Belliveau, J.W., Brady, T.J., Rosen, B.R. & Tootell, R.B. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889893.CrossRefGoogle ScholarPubMed
Silver, M.A., Ress, D. & Heeger, D.J. (2005). Topographic maps of visual spatial attention in human parietal cortex. Journal of Neurophysiology 94, 13581371.CrossRefGoogle ScholarPubMed
Smith, A.T., Singh, K.D., Williams, A.L. & Greenlee, M.W. (2001). Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. Cerebral Cortex 11, 11821190.CrossRefGoogle ScholarPubMed
Swisher, J.D., Halko, M.A., Merabet, L.B., McMains, S.A. & Somers, D.C. (2007). Visual topography of human intraparietal sulcus. The Journal of Neuroscience 27, 53265337.CrossRefGoogle ScholarPubMed
Tootell, R.B. & Hadjikhani, N. (2001). Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. Cerebral Cortex 11, 298311.CrossRefGoogle ScholarPubMed
Tootell, R.B., Hadjikhani, N.K., Mendola, J.D., Marrett, S. & Dale, A.M. (1998). From retinotopy to recognition: fMRI in human visual cortex. Trends in Cognitive Sciences 2, 174183.CrossRefGoogle ScholarPubMed
Tootell, R.B., Mendola, J.D., Hadjikhani, N.K., Ledden, P.J., Liu, A.K., Reppas, J.B., Sereno, M.I. & Dale, A.M. (1997). Functional analysis of V3A and related areas in human visual cortex. The Journal of Neuroscience 17, 70607078.CrossRefGoogle ScholarPubMed
Tsao, D.Y., Moeller, S. & Freiwald, W.A. (2008). Comparing face patch systems in macaques and humans. Proceedings of the National Academy of Sciences of the United States of America 105, 1951419519.CrossRefGoogle ScholarPubMed
Ungerleider, L.G. & Haxby, J.V. (1994). ‘What’ and ‘where’ in the human brain. Current Opinion in Neurobiology 4, 157165.CrossRefGoogle ScholarPubMed
Ungerleider, L.G. & Mishkin, M. (1982). Two cortical visual systems. In Analysis of Visual Behavior, eds. Ingle, D., Goodale, M.A. & Mansfield, R.J.W., pp. 549587. Cambridge, MA: MIT Press.Google Scholar
Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K. & WU-Minn HCP Consortium (2013). The WU-Minn human connectome project: An overview. Neuroimage 80, 6279.CrossRefGoogle ScholarPubMed
Vanduffel, W., Fize, D., Mandeville, J.B., Nelissen, K., Van Hecke, P., Rosen, B.R., Tootell, R.B. & Orban, G.A. (2001). Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32, 565577.CrossRefGoogle ScholarPubMed
Vanduffel, W., Zhu, Q. & Orban, G.A. (2014). Monkey cortex through fMRI glasses. Neuron 83, 533550.CrossRefGoogle ScholarPubMed
Victor, J.D., Purpura, K., Katz, E. & Mao, B. (1994). Population encoding of spatial frequency, orientation, and color in macaque V1. Journal of Neurophysiology 72, 21512166.CrossRefGoogle ScholarPubMed
Wada, A., Sakano, Y. & Ando, H. (2014). Human cortical areas involved in perception of surface glossiness. Neuroimage 98, 243257.CrossRefGoogle ScholarPubMed
Wade, A., Augath, M. & Logothetis, N., Wandell, B. (2008). fMRI measurements of color in macaque and human. Journal of Vision 8, 6. 1–19.CrossRefGoogle ScholarPubMed
Wade, A., Brewer, A.A., Rieger, J.W. & Wandell, B.A. (2002). Functional measurements of human ventral occipital cortex: Retinotopy and colour. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 357, 963973.CrossRefGoogle ScholarPubMed
Wandell, B.A., Brewer, A.A. & Dougherty, R.F. (2005). Visual field map clusters in human cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 693707.CrossRefGoogle ScholarPubMed
Wandell, B.A., Chial, S. & Backus, B.T. (2000). Visualization and measurement of the cortical surface. Journal of Cognitive Neuroscience 12, 739752.CrossRefGoogle ScholarPubMed
Wandell, B.A., Dumoulin, S.O. & Brewer, A.A. (2007). Visual field maps in human cortex. Neuron 56, 366383.CrossRefGoogle ScholarPubMed
Wandell, B.A. & Winawer, J. (2011). Imaging retinotopic maps in the human brain. Vision Research 51, 718737.CrossRefGoogle ScholarPubMed
Wandell, B.A. & Winawer, J. (2015). Computational neuroimaging and population receptive fields. Trends in Cognitive Sciences Epub ahead of press 19, 349357.CrossRefGoogle ScholarPubMed
Wang, L., Mruczek, R.E., Arcaro, M.J. & Kastner, S. (2014). Probabilistic maps of visual topography in human cortex. Cerebral Cortex ePub ahead of print (pii: bhu277).Google ScholarPubMed
Weiner, K.S. & Grill-Spector, K. (2010). Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neuroimage 52, 15591573.CrossRefGoogle ScholarPubMed
Winawer, J., Horiguchi, H., Sayres, R.A., Amano, K. & Wandell, B.A. (2010) Mapping hV4 and ventral occipital cortex: The venous eclipse. Journal of vision 10:1.CrossRefGoogle ScholarPubMed
Witthoft, N., Nguyen, M., Golarai, G., Liberman, A., LaRocque, K.F., Smith, M.E. & Grill-Spector, K. (2014). Visual field coverage of category-selective regions in human visual cortex estimated using population receptive field mapping. Journal of Vision 14, 718.CrossRefGoogle Scholar
Witthoft, N., Nguyen, M.L., Golarai, G., Larocque, K.F., Liberman, A., Smith, M.E. & Grill-Spector, K. (2013). Where Is Human V4? Predicting the location of hV4 and VO1 from cortical folding. Cerebral Cortex 9, 24012408.Google Scholar
Yoshor, D., Bosking, W.H., Ghose, G.M. & Maunsell, J.H. (2007). Receptive fields in human visual cortex mapped with surface electrodes. Cerebral Cortex 17, 22932302.CrossRefGoogle ScholarPubMed
Zeki, S. (1990). A century of cerebral achromatopsia. Brain 113(Pt 6), 17211777.CrossRefGoogle ScholarPubMed
Zeki, S. (1993). A Vision of the Brain. Oxford, Boston: Blackwell Scientific Publications.Google Scholar
Zeki, S. (2003). Improbable areas in the visual brain. Trends in Neurosciences 26, 2326.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1971). Cortical projections from two prestriate areas in the monkey. Brain Research 34, 1935.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1973). Colour coding in rhesus monkey prestriate cortex. Brain Research 53, 422427.CrossRefGoogle ScholarPubMed