Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T05:21:07.282Z Has data issue: false hasContentIssue false

The human cortical areas V6 and V6A

Published online by Cambridge University Press:  19 May 2015

SABRINA PITZALIS*
Affiliation:
Department of Movement, Human and Health Sciences, University of Rome ‘‘Foro Italico’’, Rome, Italy Laboratory of Neuropsychology, Santa Lucia Foundation, Rome, Italy
PATRIZIA FATTORI
Affiliation:
Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
CLAUDIO GALLETTI
Affiliation:
Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
*
*Address correspondence to: Sabrina Pitzalis, PhD, Department of Movement, Human and Health Sciences, University of Rome ‘‘Foro Italico’’, 00194 Rome, Italy. E-mail: [email protected]

Abstract

In macaque, it has long been known since the late nineties that the medial parieto-occipital sulcus (POS) contains two regions, V6 and V6A, important for visual motion and action. While V6 is a retinotopically organized extrastriate area, V6A is a broadly retinotopically organized visuomotor area constituted by a ventral and dorsal subdivision (V6Av and V6Ad), both containing arm movement-related cells active during spatially directed reaching movements. In humans, these areas have been mapped only in recent years thanks to neuroimaging methods. In a series of brain mapping studies, by using a combination of functional magnetic resonance imaging methods such as wide-field retinotopy and task-evoked activity, we mapped human areas V6 (Pitzalis et al., 2006) and V6Av (Pitzalis et al., 2013d) retinotopically and defined human V6Ad functionally as a pointing-selective region situated anteriorly in the close proximity of V6Av (Tosoni et al., 2014). Like in macaque, human V6 is a motion area (e.g., Pitzalis et al., 2010, 2012, 2013a,b,c), while V6Av and V6Ad respond to pointing movements (Tosoni et al., 2014). The retinotopic organization (when present), anatomical position, neighbor relations, and functional properties of these three areas closely resemble those reported for macaque V6 (Galletti et al., 1996, 1999a), V6Av, and V6Ad (Galletti et al., 1999b; Gamberini et al., 2011). We suggest that information on objects in depth which are translating in space, because of the self-motion, is processed in V6 and conveyed to V6A for evaluating object distance in a dynamic condition such as that created by self-motion, so to orchestrate the eye and arm movements necessary to reach or avoid static and moving objects in the environment.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, R.A., Snyder, L.H., Bradley, D.C. & Xing, J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Review of Neuroscience 20, 303330.CrossRefGoogle ScholarPubMed
Arnoldussen, D.M., Goossens, J. & van den Berg, A.V. (2011). Adjacent visual representations of self-motion in different reference frames. Proceedings of the National Academy of Sciences of the United States of America 108, 1166811673.CrossRefGoogle ScholarPubMed
Astafiev, S.V., Shulman, G.L., Stanley, C.M., Snyder, A.Z., Van Essen, D.C. & Corbetta, M. (2003). Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. Journal of Neuroscience 23, 46894699.CrossRefGoogle ScholarPubMed
Balint, R. (1909). Seelenlahmung des “Schauens”, optische Ataxia, raumliche Storung der Aufmerksamkeit. Monatsschrift fur Psychiatrie und Neurologie 25, 5181.CrossRefGoogle Scholar
Battaglini, P.P., Muzur, A., Galletti, C., Skrap, M., Brovelli, A. & Fattori, P. (2002). Effects of lesions to area V6A in monkeys. Experimental Brain Research 144, 419422.CrossRefGoogle ScholarPubMed
Beurze, S.M., de Lange, F.P., Toni, I. & Medendorp, W.P. (2007). Integration of target and effector information in the human brain during reach planning. Journal of Neurophysiology 97, 188199.CrossRefGoogle ScholarPubMed
Beurze, S.M., de Lange, F.P., Toni, I. & Medendorp, W.P. (2009). Spatial and effector processing in the human parietofrontal network for reaches and saccades. Journal of Neurophysiology 101, 30533062.CrossRefGoogle Scholar
Blanke, O., Landis, T., Mermoud, C., Spinelli, L. & Safran, A.B. (2003). Direction-selective motion blindness after unilateral posterior brain damage. European Journal of Neuroscience 18, 709722.CrossRefGoogle ScholarPubMed
Bozzacchi, C., Giusti, M.A., Pitzalis, S., Spinelli, D. & Di Russo, F. (2012a). Awareness affects motor planning for goal-oriented actions. Biological Psychology 89, 503514.CrossRefGoogle ScholarPubMed
Bozzacchi, C., Giusti, M.A., Pitzalis, S., Spinelli, D. & Di Russo, F. (2012b). Similar cerebral motor plans for real and virtual actions. PLoS One 7, e47783.CrossRefGoogle ScholarPubMed
Bozzacchi, C., Spinelli, D., Pitzalis, S., Giusti, M.A. & Di Russo, F. (2014). I know what I will see: Action-specific motor preparation activity in a passive observation task. Social Cognitive and Affective Neuroscience Sep 26. pii: nsu115.Google Scholar
Bremner, L.R. & Andersen, R.A. (2012). Coding of the reach vector in parietal area 5d. Neuron 75, 342351.CrossRefGoogle ScholarPubMed
Breveglieri, R., Galletti, C., Gamberini, M., Passarelli, L. & Fattori, P. (2006). Somatosensory cells in area PEc of macaque posterior parietal cortex. Journal of Neuroscience 26, 36793684.CrossRefGoogle ScholarPubMed
Breveglieri, R., Galletti, C., Monaco, S. & Fattori, P. (2008). Visual, somatosensory, and bimodal activities in the macaque parietal area PEc. Cerebral Cortex 18, 806816.CrossRefGoogle ScholarPubMed
Brodmann, K. (1909). Vergleichende lokalisationslehre der Grohirnrinde. Leipzig, Germany: Barth.Google Scholar
Buxbaum, L.J. & Coslett, H.B. (1997). Subtypes of optic ataxia: Reframing the disconnection account. Neurocase 3, 159166.CrossRefGoogle Scholar
Cardin, V., Hemsworth, L. & Smith, A.T. (2012). Adaptation to heading direction dissociates the roles of human MST and V6 in the processing of optic flow. Journal of Neurophysiology 108, 794801.CrossRefGoogle ScholarPubMed
Cardin, V. & Smith, A.T. (2010). Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cerebral Cortex 20, 19641973.CrossRefGoogle ScholarPubMed
Cardin, V. & Smith, A.T. (2011). Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motion. Journal of Neurophysiology 106, 12401249.CrossRefGoogle ScholarPubMed
Cavina-Pratesi, C., Monaco, S., Fattori, P., Galletti, C. & McAdam, T.D. (2010). Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. Journal of Neuroscience 30, 1030610323.CrossRefGoogle ScholarPubMed
Colby, C.L. & Duhamel, J.R. (1991). Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey. Neuropsychologia 29, 517537.CrossRefGoogle ScholarPubMed
Connolly, J.D., Andersen, R.A. & Goodale, M.A. (2003). FMRI evidence for a 'parietal reach region' in the human brain. Experimental Brain Research 153, 140145.CrossRefGoogle ScholarPubMed
de Jong, B.M., van der Graaf, F.H. & Paans, A.M. (2001). Brain activation related to the representations of external space and body scheme in visuomotor control. Neuroimage 14, 11281135.CrossRefGoogle Scholar
Dechent, P. & Frahm, J. (2003). Characterization of the human visual V6 complex by functional magnetic resonance imaging. European Journal of Neuroscience 17, 22012211.CrossRefGoogle ScholarPubMed
DeYoe, E.A., Carman, G.J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., Miller, D. & Neitz, J. (1996). Mapping striate and extrastriate visual areas in human cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America 93, 23822386.CrossRefGoogle ScholarPubMed
Fattori, P., Breveglieri, R., Marzocchi, N., Filippini, D., Bosco, A. & Galletti, C. (2009a). Hand orientation during reach-to-grasp movements modulates neuronal activity in the medial posterior parietal area V6A. Journal of Neuroscience 29, 19281936.CrossRefGoogle ScholarPubMed
Fattori, P., Gamberini, M., Kutz, D.F. & Galletti, C. (2001). 'Arm-reaching' neurons in the parietal area V6A of the macaque monkey. European Journal of Neuroscience 13, 23092313.CrossRefGoogle ScholarPubMed
Fattori, P., Kutz, D.F., Breveglieri, R., Marzocchi, N. & Galletti, C. (2005). Spatial tuning of reaching activity in the medial parieto-occipital cortex (area V6A) of macaque monkey. European Journal of Neuroscience 22, 956972.CrossRefGoogle ScholarPubMed
Fattori, P., Pitzalis, S. & Galletti, C. (2009b). The cortical visual area V6 in macaque and human brains. Journal of Physiology, Paris 103, 8897.CrossRefGoogle ScholarPubMed
Ferraina, S., Battaglia-Mayer, A., Genovesio, A., Marconi, B., Onorati, P. & Caminiti, R. (2001). Early coding of visuomanual coordination during reaching in parietal area PEc. Journal of Neurophysiology 85, 462467.CrossRefGoogle ScholarPubMed
Ferraina, S., Brunamonti, E., Giusti, M.A., Costa, S., Genovesio, A. & Caminiti, R. (2009). Reaching in depth: Hand position dominates over binocular eye position in the rostral superior parietal lobule. Journal of Neuroscience 29, 1146111470.CrossRefGoogle ScholarPubMed
Filimon, F., Nelson, J.D., Hagler, D.J. & Sereno, M.I. (2007). Human cortical representations for reaching: Mirror neurons for execution, observation, and imagery. Neuroimage 37, 13151328.CrossRefGoogle ScholarPubMed
Filimon, F., Nelson, J.D., Huang, R.S. & Sereno, M.I. (2009). Multiple parietal reach regions in humans: Cortical representations for visual and proprioceptive feedback during on-line reaching. Journal of Neuroscience 29, 29612971.CrossRefGoogle ScholarPubMed
Fischer, E., Bulthoff, H.H., Logothetis, N.K. & Bartels, A. (2012). Human areas V3A and V6 compensate for self-induced planar visual motion. Neuron 73, 12281240.CrossRefGoogle ScholarPubMed
Galletti, C., Battaglini, P.P. & Fattori, P. (1993). Parietal neurons encoding spatial locations in craniotopic coordinates. Experimental Brain Research 96, 221229.CrossRefGoogle ScholarPubMed
Galletti, C., Battaglini, P.P. & Fattori, P. (1995). Eye position influence on the parieto-occipital area PO (V6) of the macaque monkey. European Journal of Neuroscience 7, 24862501.CrossRefGoogle ScholarPubMed
Galletti, C., Battaglini, P.P. & Fattori, P. (1997b). The posterior parietal cortex in humans and monkeys. News in physiological sciences 12, 166171.Google Scholar
Galati, G., Committeri, G., Pitzalis, S., Pelle, G., Patria, F., Fattori, P. & Galletti, C. (2011). Intentional signals during saccadic and reaching delays in the human posterior parietal cortex. European Journal of Neuroscience 34, 18711885.CrossRefGoogle ScholarPubMed
Galletti, C. & Fattori, P. (2002). Posterior parietal networks encoding visual space. In The Cognitive and Neural Bases of Spatial Neglect, eds. Karnath, H-O, Milner, A.D. & Vallar, G., pp 5969. Oxford, New York: Oxford University Press.CrossRefGoogle Scholar
Galletti, C., Fattori, P., Battaglini, P.P., Shipp, S. & Zeki, S. (1996). Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. European Journal of Neuroscience 8, 3052.CrossRefGoogle ScholarPubMed
Galletti, C., Fattori, P., Gamberini, M. & Kutz, D.F. (1999a). The cortical visual area V6: Brain location and visual topography. European Journal of Neuroscience 11, 39223936.CrossRefGoogle ScholarPubMed
Galletti, C., Fattori, P., Gamberini, M. & Kutz, D.F. (2004). The most direct visual pathway to the frontal cortex. Cortex 40, 216217.CrossRefGoogle ScholarPubMed
Galletti, C., Fattori, P., Kutz, D.F. & Battaglini, P.P. (1997a). Arm movement-related neurons in the visual area V6A of the macaque superior parietal lobule. European Journal of Neuroscience 9, 410413.CrossRefGoogle ScholarPubMed
Galletti, C., Fattori, P., Kutz, D.F. & Gamberini, M. (1999b). Brain location and visual topography of cortical area V6A in the macaque monkey. European Journal of Neuroscience 11, 575582.CrossRefGoogle ScholarPubMed
Galletti, C., Gamberini, M., Kutz, D.F., Fattori, P., Luppino, G. & Matelli, M. (2001). The cortical connections of area V6: An occipito-parietal network processing visual information. European Journal of Neuroscience 13, 15721588.CrossRefGoogle ScholarPubMed
Galletti, C. & Fattori, P. (2003). Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia 41, 17171727.CrossRefGoogle ScholarPubMed
Gallivan, J.P., Cavina-Pratesi, C. & Culham, J.C. (2009). Is that within reach? fMRI reveals that the human superior parieto-occipital cortex encodes objects reachable by the hand. Journal of Neuroscience 29, 43814391.CrossRefGoogle ScholarPubMed
Gallivan, J.P., McLean, D.A., Smith, F.W. & Culham, J.C. (2011). Decoding effector-dependent and effector-independent movement intentions from human parieto-frontal brain activity. Journal of Neuroscience 31, 1714917168.CrossRefGoogle ScholarPubMed
Gamberini, M., Galletti, C., Bosco, A., Breveglieri, R. & Fattori, P. (2011). Is the medial posterior parietal area V6A a single functional area? Journal of Neuroscience 31, 51455157.CrossRefGoogle ScholarPubMed
Goodale, M.A. & Milner, A.D. (1992). Separate visual pathways for perception and action. Trends in Neuroscience 15, 2025.CrossRefGoogle ScholarPubMed
Hadjidimitrakis, K., Bertozzi, F., Breveglieri, R., Bosco, A., Galletti, C. & Fattori, P. (2014). Common neural substrate for processing depth and direction signals for reaching in the monkey medial posterior parietal cortex. Cerebral Cortex 24, 16451657.CrossRefGoogle ScholarPubMed
Heide, W., Koenig, E. & Dichgans, J. (1990). Optokinetic nystagmus, self-motion sensation and their after effects in patients with occipito-parietal lesions. Clinical Vision Sciences 5, 145156.Google Scholar
Huang, R.S., Chen, C.F., Tran, A.T., Holstein, K.L. & Sereno, M.I. (2012). Mapping multisensory parietal face and body areas in humans. Proceedings of the National Academy of Sciences of the United States of America 109, 1811418119.CrossRefGoogle ScholarPubMed
Huang, R.S. & Sereno, M.I. (2013). Bottom-up retinotopic organization supports top-down mental imagery. The Open Neuroimaging Journal 7, 5867.CrossRefGoogle ScholarPubMed
Hyvarinen, J. (1982). Posterior parietal lobe of the primate brain. Physiological Reviews 62, 10601129.CrossRefGoogle ScholarPubMed
Jakobson, L.S., Archibald, Y.M., Carey, D.P. & Goodale, M.A. (1991). A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia 29, 803809.CrossRefGoogle Scholar
Jeannerod, M. (1986). The formation of finger grip during prehension. A cortically mediated visuomotor pattern. Behavioural Brain Research 19, 99116.CrossRefGoogle ScholarPubMed
Karnath, H.O. & Perenin, M.T. (2005). Cortical control of visually guided reaching: Evidence from patients with optic ataxia. Cerebral Cortex 15, 15611569.CrossRefGoogle ScholarPubMed
Konen, C.S., Mruczek, R.E., Montoya, J.L. & Kastner, S. (2013). Functional organization of human posterior parietal cortex: Grasping- and reaching-related activations relative to topographically organized cortex. Journal of Neurophysiology 109, 28972908.CrossRefGoogle ScholarPubMed
Kravitz, D.J., Saleem, K.S., Baker, C.I. & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience 12, 217230.CrossRefGoogle ScholarPubMed
Lacquaniti, F., Guigon, E., Bianchi, L., Ferraina, S. & Caminiti, R. (1995). Representing spatial information for limb movement: Role of area 5 in the monkey. Cerebral Cortex 5, 391409.CrossRefGoogle ScholarPubMed
Luppino, G., Ben Hamed, S., Gamberini, M., Matelli, M. & Galletti, C. (2005). Occipital (V6) and parietal (V6A) areas in the anterior wall of the parieto-occipital sulcus of the macaque: A cytoarchitectonic study. European Journal of Neuroscience 21, 30563076.CrossRefGoogle ScholarPubMed
McKeefry, D.J. & Zeki, S. (1997). The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120, 22292242.CrossRefGoogle ScholarPubMed
Monaco, S., Cavina-Pratesi, C., Sedda, A., Fattori, P., Galletti, C. & Culham, J.C. (2011). Functional magnetic resonance adaptation reveals the involvement of the dorsomedial stream in hand orientation for grasping. Journal of Neurophysiology 106, 22482263.CrossRefGoogle ScholarPubMed
Perenin, M.T. & Vighetto, A. (1988). Optic ataxia: A specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111, 643674.CrossRefGoogle ScholarPubMed
Pitzalis, S., Bozzacchi, C., Bultrini, A., Fattori, P., Galletti, C. & Di Russo, F. (2013a). Parallel motion signals to the medial and lateral motion areas V6 and MT? Neuroimage 67, 89100.CrossRefGoogle Scholar
Pitzalis, S., Fattori, P. & Galletti, C. (2013b). The functional role of the medial motion area V6. Frontiers in Behavioral Neuroscience 6, 113.CrossRefGoogle ScholarPubMed
Pitzalis, S., Galletti, C., Huang, R.S., Patria, F., Committeri, G., Galati, G., Fattori, P. & Sereno, M.I. (2006). Wide-field retinotopy defines human cortical visual area v6. Journal of Neuroscience 26, 79627973.CrossRefGoogle ScholarPubMed
Pitzalis, S., Sdoia, S., Bultrini, A., Committeri, G., Di Russo, F., Fattori, P., Galletti, C. & Galati, G. (2013c). Selectivity to translational egomotion in human brain motion areas. PLoS One 8, e60241.CrossRefGoogle ScholarPubMed
Pitzalis, S., Sereno, M.I., Committeri, G., Fattori, P., Galati, G., Patria, F. & Galletti, C. (2010). Human V6: The medial motion area. Cerebral Cortex 20, 411424.CrossRefGoogle ScholarPubMed
Pitzalis, S., Sereno, M.I., Committeri, G., Fattori, P., Galati, G., Tosoni, A. & Galletti, C. (2013d). The human homologue of macaque area V6A. NeuroImage 82, 517530CrossRefGoogle ScholarPubMed
Pitzalis, S., Strappini, F., De Gasperis, M., Bultrini, A. & Di Russo, F. (2012). Spatio-temporal brain mapping of motion-onset VEPs combined with fMRI and retino-topic maps. PLoS One 7, e35771.CrossRefGoogle Scholar
Ratcliff, G. & Davies-Jones, G.A.B. (1972). Defective visual localization in focal brain wounds. Brain 95, 4960.CrossRefGoogle ScholarPubMed
Richer, F., Martinez, M., Cohen, H. & Sthilaire, J.M. (1991). Visual motion perception from stimulation of the human medial parieto-occipital cortex. Experimental Brain Research 87, 649.CrossRefGoogle ScholarPubMed
Rizzolatti, G. & Matelli, M. (2003). Two different streams form the dorsal visual system: Anatomy and functions. Experimental Brain Research 153, 146157.CrossRefGoogle ScholarPubMed
Rossit, S., McAdam, T., McLean, D.A., Goodale, M.A. & Culham, J.C. (2013). fMRI reveals a lower visual field preference for hand actions in human superior parieto-occipital cortex (SPOC) and precuneus. Cortex 49, 25252541.CrossRefGoogle ScholarPubMed
Sakata, H., Takaoka, Y., Kawarasaki, A. & Shibutani, H. (1973). Somatosensory properties of neurons in superior parietal cortex (area 5) of the rhesus monkey. Brain Research 64, 85102.CrossRefGoogle ScholarPubMed
Sereno, M.I. (1998). Brain mapping in animals and humans. Current Opinion in Neurobiology 8, 188194.CrossRefGoogle ScholarPubMed
Sereno, M.I., Dale, A.M., Reppas, J.B., Kwong, K.K., Belliveau, J.W., Brady, T.J., Rosen, B.R. & Tootell, R.B. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889893.CrossRefGoogle ScholarPubMed
Sereno, M.I. & Huang, R.S. (2006). A human parietal face area contains aligned head-centered visual and tactile maps. Nature Neuroscience 9, 13371343.CrossRefGoogle ScholarPubMed
Sereno, M.I., Lutti, A., Weiskopf, N. & Dick, F. (2013). Mapping the human cortical surface by combining quantitative T(1) with retinotopy. Cerebral Cortex 23, 22612268.CrossRefGoogle ScholarPubMed
Sereno, M.I., Pitzalis, S. & Martinez, A. (2001). Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294, 13501354.CrossRefGoogle ScholarPubMed
Sereno, M.I. & Tootell, R.B.H. (2005). From monkeys to humans: What do we now know about brain homologies? Current Opinion in Neurobiology 15, 135144.CrossRefGoogle ScholarPubMed
Simon, O., Mangin, J.F., Cohen, L., Le Bihan, D. & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron 33, 475487.CrossRefGoogle ScholarPubMed
Snyder, L.H., Batista, A.P. & Andersen, R.A. (1997) Coding of intention in the posterior parietal cortex. Nature 386, 167170.CrossRefGoogle ScholarPubMed
Snyder, L.H., Batista, A.P. & Andersen, R.A. (1998) Change in motor plan, without a change in the spatial locus of attention, modulates activity in posterior parietal cortex. Journal of Neurophysiology 79, 28142819.CrossRefGoogle ScholarPubMed
Snyder, L.H., Batista, A.P. & Andersen, R.A. (2000) Saccade-related activity in the parietal reach region. Journal of Neurophysiology 83, 10991102.CrossRefGoogle ScholarPubMed
Tootell, R.B. & Hadjikhani, N. (2001). Where is “dorsal V4” in human visual cortex? Retinotopic, topographic and functional evidence. Cerebral Cortex 11, 298311.CrossRefGoogle ScholarPubMed
Tootell, R.B., Hadjikhani, N., Hall, E.K., Marrett, S., Vanduffel, W., Vaughan, J.T. & Dale, A.M. (1998). The retinotopy of visual spatial attention. Neuron 21, 14091422.CrossRefGoogle ScholarPubMed
Tootell, R.B., Mendola, J.D., Hadjikhani, N.K., Ledden, P.J., Liu, A.K., Reppas, J.B., Sereno, M.I. & Dale, A.M. (1997). Functional analysis of V3A and related areas in human visual cortex. Journal of Neuroscience 17, 70767078.CrossRefGoogle ScholarPubMed
Tootell, R.B., Reppas, J.B., Kwong, K.K., Malach, R., Born, R.T., Brady, T.J., Rosen, B.R. & Belliveau, J.W. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience 15, 32153230.CrossRefGoogle ScholarPubMed
Tosoni, A., Galati, G., Romani, G.L. & Corbetta, M. (2008). Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions. Nature Neuroscience 11, 14461453.CrossRefGoogle ScholarPubMed
Tosoni, A., Pitzalis, S., Committeri, G., Fattori, P., Galletti, C. & Galati, G. (2014). Resting-state connectivity and functional specialization in human medial parieto-occipital cortex. Brain Structure and Function Aug 6.Google ScholarPubMed
Ungerleider, L.G. & Mishkin, M. (1982). Two Cortical Visual System. Analysis of Visual Behavior. Cambridge, MA: MIT.Google Scholar
Van Essen, D.C., Glasser, M.F., Dierker, D.L., Harwell, J. & Coalson, T. (2011). Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 22(10), 22412262.CrossRefGoogle ScholarPubMed
Vesia, M., Prime, S.L., Yan, X., Sergio, L.E. & Crawford, J.D. (2010). Specificity of human parietal saccade and reach regions during transcranial magnetic stimulation. Journal of Neuroscience 30, 1305313065.CrossRefGoogle ScholarPubMed
Warren, P.A. and Rushton, S.K. (2009). Optic flow processing for the assessment of object movement during ego movement. Current Biology 19, 15551560.CrossRefGoogle ScholarPubMed
Watson, J.D.G., Myers, R., Frakowiak, R.S.J., Hajnal, J.V., Woods, R.P., Mazziotta, J.C., Shipp, S. & Zeki, S. (1993). Area-V5 of the human brain - Evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cerebral Cortex 3, 7994.CrossRefGoogle ScholarPubMed
Wiest, G., Zimprich, F., Prayer, D., Czech, T. & Serles, W., Baumgartner, C. (2004). Vestibular processing in human paramedian precuneus as shown by electrical cortical stimulation. Neurology 62, 473.CrossRefGoogle ScholarPubMed