Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T22:42:41.409Z Has data issue: false hasContentIssue false

How much feedback from visual cortex to lateral geniculate nucleus in cat: A perspective

Published online by Cambridge University Press:  01 July 2004

JULIAN M.L. BUDD
Affiliation:
Department of Informatics, School of Science & Technology, Sussex University, Brighton, UK

Abstract

Corticothalamic feedback is believed to play an important role in selectively regulating the flow of sensory information from thalamus to cortex. But despite its importance, the size and nature of corticothalamic pathway connectivity is not fully understood. In light of recent empirical data, the aim of this paper was to quantify the contribution of area 17 axon connectivity to the synaptic organization of A-laminae in dorsal lateral geniculate nucleus (dLGN) in cat, the best studied corticothalamic pathway. Numerical constraints indicate that most corticogeniculate synapses are not formed with inhibitory interneurons. However, the main finding is that there was an order of magnitude difference between estimates of the mean number of cortical synapses per A-laminae neuron based on individual corticogeniculate axon data (12,000–16,000 cortical synapses per cell) than that previously derived from partial reconstructions of the synaptic input to two physiologically identified relay cells (1200–1500 cortical synapses per cell). In an attempt to reconcile these different estimates, parameter variation and comparative analyses suggest that previous work may have overestimated the density of corticogeniculate efferent neurons and underestimated the total number of synapses per geniculate neuron. But as this analysis did not include area 18 corticogeniculate axons innervating A-laminae, the discrepancy between different estimates may be greater and require further explanation. Thus, the analysis presented here suggests geniculate neurons receive on average a greater number of cortical synapses per cell but from far fewer corticogeniculate axons than previously thought.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper is dedicated to the memory of Bertram Payne, collaborator and friend.

References

REFERENCES

Ahlsén, G. & Lindström, S. (1982a). Excitation of perigeniculate neurones via axon collaterals of principal cells. Brain Research 236, 477481.Google Scholar
Ahlsén, G. & Lindström, S. (1982b). Mutual inhibition between perigeniculate neurones. Brain Research 236, 482486.Google Scholar
Ahlsén, G., Grant, K., & Lindström, S. (1982). Monosynaptic excitation of principal cells in the lateral geniculate nucleus by corticofugal fibres. Brain Research 234, 454458.CrossRefGoogle Scholar
Ahlsén, G., Lindström, S., & Lo, F.-S. (1985). Interaction between inhibitory pathways to principal cells in the lateral geniculate nucleus of the cat. Experimental Brain Research 58, 134143.Google Scholar
Ahmad, A. & Spear, P.D. (1993). Effects of aging on the size, density and number of rhesus monkey lateral geniculate neurons. Journal of Comparative Neurology 334, 631643.CrossRefGoogle Scholar
Ahmed, B., Anderson, J.C., Douglas, R.J., Martin, K.A.C., & Nelson, J.C. (1994). Polyneuronal innervation of spiny stellate neurons in cat visual cortex. Journal of Comparative Neurology 341, 3949.CrossRefGoogle Scholar
Anderson, P.A., Olavarria J., & Van Sluyters, R.C. (1988). The overall pattern of ocular dominance bands in cat visual cortex. Journal of Neuroscience 8, 21832200.Google Scholar
Bal, T., Debay, D., & Destexhe, A. (2000). Cortical feedback controls the frequency and synchrony of oscillations in the visual thalamus. Journal of Neuroscience 20, 74787488.Google Scholar
Beaulieu, C. & Colonnier, M. (1983). The number of neurons in different laminae of the binocular and monocular regions of area 17 in the cat. Journal of Comparative Neurology 217, 337344.CrossRefGoogle Scholar
Beaulieu, C., Kisvárday, Z.F., Somogyi, P., Cynader, M., & Cowey, A. (1992). Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). Cerebral Cortex 2, 295309.CrossRefGoogle Scholar
Bickford, M.E., Günlük, A.E., Guido, W., & Sherman, S.M. (1993). Evidence that cholinergic axons from the parabrachial region of the brainstem are the exclusive sources of nitric oxide in the lateral geniculate nucleus of the cat. Journal of Comparative Neurology 334, 410430.CrossRefGoogle Scholar
Bickford, M.E., Günlük, A.E., Van Horn, S.C., & Sherman, S.M. (1994). GABAergic projection from the basal forebrain to the visual sector of the thalamic reticular nucleus in the cat. Journal of Comparative Neurology 348, 481510.CrossRefGoogle Scholar
Bloomfield, S.A. & Sherman, S.M. (1989). Dendritic current flow in relay cells and interneurons of the cat's lateral geniculate nucleus. Proceedings of the National Academy of Sciences of the U.S.A. 86, 39113914.CrossRefGoogle Scholar
Bowling, D.B. & Michael, C.R. (1984). Terminal patterns of single, physiologically characterized optic tract fibers in the cat's lateral geniculate nucleus. Journal of Neuroscience 4, 198216.Google Scholar
Boyapati, J. & Henry, G. (1984). Corticofugal axons in the lateral geniculate nucleus of the cat. Experimental Brain Research 53, 335340.CrossRefGoogle Scholar
Coleman, L.-A., Jordan, A., & Friedlander, M.J. (1993). Neuron number in the dorsal lateral geniculate nucleus (LGNd) of the cat. Investigative Ophthalmology and Visual Science (Suppl.) 34, 1172.Google Scholar
Contreras, D., Destexhe, A., Sejnowski, T.J., & Steriade, M. (1996). Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274, 771774.CrossRefGoogle Scholar
Datskovskaia, A., Carden, W.B., & Bickford, M.E. (2001). Y retinal terminals contact interneurons in the cat dorsal lateral geniculate nucleus. Journal of Comparative Neurology 430, 85100.3.0.CO;2-K>CrossRefGoogle Scholar
Erisir, A., Van Horn, S.C., & Sherman, S.M. (1997). Relative number of cortical and brainstem inputs to the lateral geniculate nucleus. Proceedings of the National Academy of Sciences of the U.S.A. 94, 15171520.CrossRefGoogle Scholar
Erisir, A., Van Horn, S.C., & Sherman, S.M. (1998). Distribution of synapses in the lateral geniculate nucleus of the cat: Differences between laminae A and A1 and between relay cells and interneurons. Journal of Comparative Neurology 390, 247255.3.0.CO;2-1>CrossRefGoogle Scholar
Felleman, D.J. & Van Essen, D.C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1, 147.CrossRefGoogle Scholar
Ferster, D. & LeVay, S. (1978). The axon arborizations of lateral geniculate neurons in the striate cortex of the cat. Journal of Comparative Neurology 182, 923944.CrossRefGoogle Scholar
Ferster, D. & Lindstrom, S. (1983). An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. Journal of Physiology (London) 342, 181215.CrossRefGoogle Scholar
Fitzpatrick, D., Penny, G.R., & Schmechel, D.E. (1984). Glutamic acid decarboxylase-immunoreactive neurons and terminals in the lateral geniculate nucleus of the cat. Journal of Neuroscience 4, 18091829.Google Scholar
Fitzpatrick, D., Usrey, W.M., Schofield, B.R, & Einstein, G. (1994). The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex. Visual Neuroscience 11, 307315.CrossRefGoogle Scholar
Freund, T.F., Martin, K.A.C., & Whitteridge, D. (1985a). Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements. Journal of Comparative Neurology 242, 263274.Google Scholar
Freund, T.F., Martin, K.A.C., Somogyi, P., & Whitteridge, D. (1985b). Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic afferents. I. Identification of postsynaptic targets by GABA immunocytochemistry and Golgi impregnation. Journal of Comparative Neurology 242, 275291.Google Scholar
Friedlander, M.J., Lin, C.-S., Stanford, L.R., & Sherman, S.M. (1981). Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. Journal of Neurophysiology 46, 80127.Google Scholar
Funke, K. & Eysel, U.T. (1992). EEG-dependent modulation of response dynamics of cat dLGN relay cells and the contribution of corticogeniculate feedback. Brain Research 573, 217227.CrossRefGoogle Scholar
Garey, L.J., Jones, E.G., & Powell, T.P.S. (1968). Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. Journal of Neurology, Neurosurgery & Psychiatry 31, 135157.CrossRefGoogle Scholar
Geisert, E.E. (1980). Cortical projections of the lateral geniculate nucleus in the cat. Journal of Comparative Neurology 190, 793812.CrossRefGoogle Scholar
Gilbert, C.D. & Kelly, J.P. (1975). The projections of cells in different layers of the cat's visual cortex. Journal of Comparative Neurology 163, 81106.CrossRefGoogle Scholar
Gilbert, C.D. (1977). Laminar differences in receptive field properties of cells in cat primary visual cortex. Journal of Physiology (London) 268, 391421.CrossRefGoogle Scholar
Gilbert, C.D. & Wiesel, T.N. (1979). Morphological and intracortical projections of functionally characterised neurones in the cat striate cortex. Nature 280, 120125.CrossRefGoogle Scholar
Gloor, P. & Fariello, R.G. (1988). Generalised epilepsy: Some of its cellular mechanisms differ from those of focal epilepsy. Trends in Neurosciences 11, 6368.CrossRefGoogle Scholar
Godwin, D.W., Van Horn, S.C., Erisir, A., Sesma, M., Romano, C., & Sherman, S.M. (1996). Ultrastructural localization suggests the retinal and cortical inputs access different metabotropic glutamate receptors in the lateral geniculate nucleus. Journal of Neuroscience 16, 81818192.Google Scholar
Grieve, K.L. & Sillito, A.M. (1995). Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum. Journal of Neuroscience 15, 48684874.Google Scholar
Guido, W., Lu, S.M., Vaughan, J.W., Godwin, D.W., & Sherman, S.M. (1995). Receiver operating characteristic (ROC) analysis of neurons in the cat's lateral geniculate nucleus during tonic and burst response mode. Visual Neuroscience 12, 723741.CrossRefGoogle Scholar
Guillery, R.W. (1966). A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat. Journal of Comparative Neurology 128, 2150.CrossRefGoogle Scholar
Guillery, R.W. (1967). Patterns of fibre degeneration in the dorsal lateral geniculate nucleus of the cat following lesions in the visual cortex. Journal of Comparative Neurology 130, 197222.CrossRefGoogle Scholar
Guillery, R.W. (1969a). The organization of synaptic interconnections in the dorsal lateral geniculate nucleus of the cat. Zeitschrift für Zellforschung und Mikroskopische Anatomie 96, 138.Google Scholar
Guillery, R.W. (1969b). A quantitative study of synaptic interconnections in the dorsal lateral geniculate nucleus of the cat. Zeitschrift für Zellforschung und Mikroskopische Anatomie 96, 3948.Google Scholar
Guillery, R.W. (1971). Patterns of synaptic interconnections in the dorsal lateral geniculate nucleus of cat and monkey: A brief review. Vision Research (Suppl.) 3, 211227.CrossRefGoogle Scholar
Gundersen, H.J.G. (1986). Stereology of arbitrary particles. Journal of Microscopy 143, 345.CrossRefGoogle Scholar
Hamos, J.E., Van Horn, S.C., Raczkowski, D., & Sherman, S.M. (1985). Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat. Nature 317, 618621.CrossRefGoogle Scholar
Hamos, J.E., Van Horn, S.C., Raczkowski, D., & Sherman, S.M. (1987). Synaptic circuits involving an individual retinogeniculate axon in the cat. Journal of Comparative Neurology 259, 165192.CrossRefGoogle Scholar
Harvey, A.R. (1980). A physiological analysis of subcortical and commisural projections of areas 17 and 18 of the cat. Journal of Physiology (London) 302, 507534.CrossRefGoogle Scholar
Hildebrand, C., Remahl, S., Persson, H., & Bjartmar, C. (1993). Myelinated nerve fibres in the CNS. Progress in Neurobiology 40, 319384.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1961). Integrative action in the cat's lateral geniculate body. Journal of Physiology (London) 155, 385398.CrossRefGoogle Scholar
Humphrey, A.L., Sur, M., Uhlrich, D.J., & Sherman, S.M. (1985). Projection patterns of individual X- and Y-type cell axons from lateral geniculate nucleus to cortical area 17 in the cat. Journal of Comparative Neurology 233, 159189.CrossRefGoogle Scholar
Ide, L.S. (1982). The fine structure of the perigeniculate nucleus in the cat. Journal of Comparative Neurology 210, 317334.CrossRefGoogle Scholar
Illing, R.B. & Wässle, H. (1981). The retinal projection to the thalamus in the cat: A quantitative investigation and a comparison with the retinotectal pathway. Journal of Comparative Neurology 202, 265285.CrossRefGoogle Scholar
Jack, J.J.B., Noble, D., & Tsien, R.W. (1983). Electric Current Flow in Excitable Cells. 2nd edition. Oxford: Clarendon Press.
Jahnsen, H. & Llinas, R. (1984a). Electrophysiological properties of guinea-pig thalamic neurones: An in vitro study. Journal of Physiology (London) 349, 205226.Google Scholar
Jahnsen, H. & Llinas, R. (1984b). Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. Journal of Physiology (London) 349, 227247.Google Scholar
Jones, E.G. (1985). The Thalamus. New York, New York: Plenum Press.CrossRef
Kalil, R.E. & Chase, R. (1970). Corticofugal influence on activity of lateral geniculate neurons in cat. Journal of Neurophysiology 33, 459474.Google Scholar
Katz, L.C. (1987). Local circuitry of identified projection neurons in cat visual cortex brain slices. Journal of Neuroscience 7, 12231249.Google Scholar
Kim, U., Sanchez-Vives, M.V., & McCormick, D.A. (1997). Functional dynamics of GABAergic inhibition in the thalamus. Science 278, 130134.CrossRefGoogle Scholar
Lübke, J. & Albus, K. (1989). The postnatal development of layer VI neurons in the cat's striate cortex, as visualized by intracellular Lucifer yellow injections in aldehyde-fixed tissue. Developmental Brain Research 45, 2938.CrossRefGoogle Scholar
Lui, X.B., Honda, C.N., & Jones, E.G. (1995). Distribution of four types of synapse on physiologically identified relay cell neurons in the ventral posterior thalamic nucleus of the cat. Journal of Comparative Neurology 352, 6991.Google Scholar
Lund, J.S., Lund, R.D., Hendrickson, A.E., Bunt, A.H., & Fuchs, A.F. (1975). The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 164, 287304.CrossRefGoogle Scholar
Lund, J.S., Henry, G.H., MacQueen, C.L., & Harvey, A.R. (1979). Anatomical organization of the primary visual cortex (area 17) of the cat: A comparison with area 17 of the macaque monkey. Journal of Comparative Neurology 184, 599618.CrossRefGoogle Scholar
Madarász, M., Gerle, J., Hajdu, F., Somogyi, Gy., & Tömböl, T. (1978). Quantitative histological studies on the lateral geniculate nucleus in the cat II. Cell numbers and densities in the several layers. Journal für Hirnforschung 19, 159164.Google Scholar
Madarász, M., Somogyi, Gy., Somogyi, J., & Hámori, J. (1985). Numerical estimates of the γ-aminobutyric acid (GABA)-containing neurons in three thalamic nuclei of the cat: Direct GABA immunocyochemistry. Neuroscience Letters 61, 7378.CrossRefGoogle Scholar
Martin, K.A.C. & Whitteridge, D. (1984). Form, function, and intracortical projections of spiny neurones in the striate visual cortex of the cat. Journal of Physiology (London) 353, 463504.CrossRefGoogle Scholar
McCart, R.J. & Henry, G.H. (1994). Visual corticogeniculate projections in the cat. Brain Research 653, 351356.CrossRefGoogle Scholar
McCormick, D.A. & von Krosigk, M. (1992). Corticothalamic activation modulates thalamic firing through glutamate ‘metabotropic’ receptors. Proceedings of the National Academy of Sciences of the U.S.A. 89, 27742778.CrossRefGoogle Scholar
Montero, V.M. (1991). A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus. Experimental Brain Research 86, 257270.Google Scholar
Montero, V.M. & Zempel, J. (1985). Evidence for two types of GABA-containing interneurons in the A-laminae of the cat lateral geniculate nucleus: A double-label HRP and GABA-immunocytochemical study. Experimental Brain Research 60, 603609.Google Scholar
Murphy, P.C. & Sillito, A.M. (1987). Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329, 727729.CrossRefGoogle Scholar
Murphy, P.C. & Sillito, A.M. (1989). The binocular input to cells in the feline dorsal lateral geniculate nucleus (dLGN). Journal of Physiology (London) 415, 393408.CrossRefGoogle Scholar
Murphy, P.C. & Sillito, A.M. (1996). Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. Journal of Neuroscience 16, 11801192.Google Scholar
Murphy, P.C., Duckett, S.G., & Sillito, A.M. (1999). Feedback connections to the lateral geniculate nucleus and cortical response properties. Science 286, 11521154.Google Scholar
Murphy, P.C., Duckett, S.G., & Sillito, A.M. (2000). Comparison of the laminar distribution of input from areas 17 and 18 of the visual cortex to the lateral geniculate nucleus of the cat. Journal of Neuroscience 20, 845853.Google Scholar
O'Leary, J.L. (1941). Structure of the area striate of the cat. Journal of Comparative Neurology 75, 131161.CrossRefGoogle Scholar
Orban, G.A. (1984). Neuronal Operations in the Visual Cortex. Berlin: Springer-Verlag.CrossRef
Payne, B.R. & Peters, A. (2002). The concept of cat primary visual cortex. In The Cat Primary Visual Cortex, ed. Payne, B.R. & Peters, A., pp. 1129. New York, New York: Academic Press.CrossRef
Peters, A. & Palay, S.L. (1966). The morphology of laminae A and A1 of the dorsal nucleus of the lateral geniculate body of the cat. Journal of Anatomy (London) 100, 451486.Google Scholar
Peters, A. & Payne, B.R. (1993). Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cerebral Cortex 3, 6978.CrossRefGoogle Scholar
Peters, A. & Regidor, J. (1981). A reassessment of the forms of nonpyramidal neurons in area 17 of cat visual cortex. Journal of Comparative Neurology 203, 685716.CrossRefGoogle Scholar
Peters, A. & Yilmaz, E. (1993). Neuronal organization in area 17 of cat visual cortex. Cerebral Cortex 3, 4968.CrossRefGoogle Scholar
Ritchie, J.M. (1982). On the relation between fibres diameter and conduction velocity in myelinated nerve fibres. Proceedings of the Royal Society B (London) 217, 2935.CrossRefGoogle Scholar
Rivadulla, C., Martinez, L.M., Varela, C., & Cudeiro, J. (2002). Completing the corticofugal loop: A visual role for the corticogeniculate type 1 metabotropic glutamate receptor. Journal of Neuroscience 22, 29562962.Google Scholar
Robson, J.A. (1983). The morphology of corticofugal axons to the dorsal lateral geniculate nucleus in the cat. Journal of Comparative Neurology 216, 89103.CrossRefGoogle Scholar
Robson, J.A. (1984). Reconstructions of corticogeniculate axons in the cat. Journal of Comparative Neurology 225, 193200.CrossRefGoogle Scholar
Robson, J.A. (1993). Qualitative and quantitative analyses of the patterns of retinal input to neurons in the dorsal lateral geniculate nucleus of the cat. Journal of Comparative Neurology 334, 324336.CrossRefGoogle Scholar
Rushton, W.A.H. (1951). A theory of the effects of fibre size in medullated nerve. Journal of Physiology (London) 115, 101122.CrossRefGoogle Scholar
Scharfman, H.E., Lu, S.-M., Guido, W., Adams, R., & Sherman, S.M. (1990). N-methyl-D-aspartate receptors contribute to excitatory postsynaptic potentials of cat lateral geniculate nucleus neurons recorded in thalamic slices. Proceedings of the National Academy of Sciences of the U.S.A. 87, 45484552.CrossRefGoogle Scholar
Sherman, S.M. (1996). Dual response modes in lateral geniculate neurons: Mechanisms and functions. Visual Neuroscience 13, 205213.CrossRefGoogle Scholar
Sherman, S.M. & Guillery, R.W. (2001). Exploring the Thalamus. San Diego, California: Academic Press.
Sherman, S.M. & Guillery, R.W. (2002). The role of the thalamus in the flow of information to the cortex. Philosophical Transactions of the Royal Society B (London) 357, 16951708.CrossRefGoogle Scholar
Sherman, S.M. & Koch, C. (1986). The control of retionogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research 63, 120.Google Scholar
Sherman, S.M. & Koch, C. (1998). Thalamus. In Synaptic Organization of the Brain, 4th edition, ed. Shepherd, G.M., pp. 289328. Oxford: Oxford University Press.
Sillito, A.M. & Jones, H.E. (2002). Corticothalamic interactions in the transfer of visual information. Philosophical Transactions of the Royal Society B (London) 357, 17391752.CrossRefGoogle Scholar
Sillito, A.M., Murphy, P.C., Salt, T.E., & Moody, C.I. (1990). Dependence of retinogeniculate transmission in cat on NMDA receptors. Journal of Neurophysiology 63, 347355.Google Scholar
Sillito, A.M., Jones, H.E., Gerstein, G.L., & West, D.C. (1994). Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369, 479482.CrossRefGoogle Scholar
Sillito, A.M., Grieve, K.L., Jones, H.E., Cudeiro, J., & Davis, J. (1995). Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378, 492496.CrossRefGoogle Scholar
Stein, J.J., Johnson, S.A., & Berson, D.M. (1996). Distribution and coverage of beta cells in the cat retina. Journal of Comparative Neurology 372, 597617.3.0.CO;2-#>CrossRefGoogle Scholar
Sur, M., Esguerra, M., Garraghty, P.E., Kritzer, M.F., & Sherman, S.M. (1987). Morphology of physiologically identified retinogeniculate X- and Y-axons in the cat. Journal of Neurophysiology 58, 132.Google Scholar
Swadlow, H.A. & Gusev, A.G. (2001). The impact of ‘bursting’ thalamic impulses at a neocortical synapse. Nature Neuroscience 4, 402408.CrossRefGoogle Scholar
Swadlow, H.A., Gusev, A.G., & Bezdudnaya, T. (2002). Activation of a cortical column by a thalamocortical impulse. Journal of Neuroscience 22, 77667773.Google Scholar
Szentágothai, J. (1963). The structure of the synapse in the lateral geniculate body. Acta Anatomica 55, 166185.CrossRefGoogle Scholar
Tömböl, T., Hajdu, F., & Somogyi, Gy. (1975). Identification of the Golgi picture of the layer VI cortico-geniculate projection neurons. Experimental Brain Research 24, 107110.Google Scholar
Tsumoto, T. & Suda, K. (1980). Three groups of cortico-geniculate neurons and their distribution in binocular and monocular segments of cat striate cortex. Journal of Comparative Neurology 193, 223236.CrossRefGoogle Scholar
Tsumoto, T., & Creutzfeldt, O.D. & Legéndy, C.R. (1978). Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat (with an appendix on geniculo-cortical mono-synaptic connections). Experimental Brain Research 32, 345364.Google Scholar
Updyke, B.V. (1975). The patterns of projection of cortical areas 17, 18, and 19 onto the laminae of the dorsal lateral geniculate nucleus in the cat. Journal of Comparative Neurology 163, 377396.CrossRefGoogle Scholar
Updyke, B.V. (1977). Topographic organization of the projections from cortical areas 17, 18, and 19 onto thalamus, pretectum and superior colliculus in the cat. Journal of Comparative Neurology 173, 81122.CrossRefGoogle Scholar
Van Horn, S.C., Erisir, A., & Sherman, S.M. (2000). Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. Journal of Comparative Neurology 416, 509520.3.0.CO;2-H>CrossRefGoogle Scholar
Vidnyánszky, Z. & Hámori, J. (1994). Quantitative electron microscopic analysis of synaptic input from cortical areas 17 and 18 to the dorsal lateral geniculate nucleus in cats. Journal of Comparative Neurology 349, 259268.CrossRefGoogle Scholar
Wang, S., Bickford, M.E., Van Horn, S.C., Erisir, A., Godwin, D.W., & Sherman, S.M. (2001). Synaptic targets of thalamic reticular nucleus terminals in the visual thalamus of the cat. Journal of Comparative Neurology 440, 321341.CrossRefGoogle Scholar
Waxman, S.G. & Bennett, M.V.L. (1972). Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system. Nature New Biology 238, 217219.CrossRefGoogle Scholar
Weber, A.J., Kalil, R.E., & Behan, M. (1989). Synaptic connections between corticogeniculate axons and interneurons in the dorsal lateral geniculate nucleus of the cat. Journal of Comparative Neurology 289, 156164.CrossRefGoogle Scholar
Williams, R.W., Cavada, C., & Reinoso-Suárez, F. (1993). Rapid evolution of the visual system: A cellular assay of the retina and dorsal lateral geniculate nucleus of the spanish wildcat and the domestic cat. Journal of Neuroscience 13, 208228.Google Scholar
Wilson, J.R., Friedlander, M.J., & Sherman, S.M. (1984). Fine structural morphology of identified X- and Y-cells in the cat's lateral geniculate nucleus. Proceedings of the Royal Society B (London) 221, 411436.CrossRefGoogle Scholar