Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T20:25:25.311Z Has data issue: false hasContentIssue false

Functional role of GABA in cat retina: I. Effects of GABAA agonists

Published online by Cambridge University Press:  02 June 2009

Thomas E. Frumkes
Affiliation:
Laboratory of Neurophysiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda Psychology Department, 65–30 Kissena Blvd., Queens College of CUNY, Flushing
Ralph Nelson
Affiliation:
Laboratory of Neurophysiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda

Abstract

Putative GABAergic mechanisms were studied in perfused cat retina by means of intracellular recording and application of GABA and the GABAA agonists δ-amino valeric acid (dAVA), muscimol, and THIP. In contrast to results reported previously for cold-blooded vertebrates, introduction of 20 mM GABA into the superfusate had no influence upon the response properties of cat retinal horizontal cells (HCs). In common with results reported in cold-blooded vertebrates, introduction of the GABAA agonists dAVA (2–12 mM) and THIP or muscimol (0.2–1 mM) had four consistent reversible influences upon the response properties of cat retinal HCs: (1) they reduced photic-response amplitude, (2) slowed response onset, (3) slowed response offset, and (4) depolarized the dark membrane potential. Both rod and cone signal components were affected. GABAA agonists had similar influences upon both the time course and amplitude of responses recorded from amacrine and ganglion cells. In all cell types examined, the influence upon response kinetics was made particularly apparent with rapidly flickering stimuli. Flicker responses were reduced in amplitude much more than sustained responses. These results suggest that, in addition to other influences, GABAergic action serves to modify the time course of photic responses in both the inner and outer plexiform layer of mammalian retina making responses slower and less phasic.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bolz, J., Frumkes, T.E., Voigt, T. & Wässle, H. (1985). Action and localization of gamma-aminobutyric acid in the cat retina. Journal of Physiology 362, 369393.CrossRefGoogle ScholarPubMed
Chun, M.H. & Wässle, H. (1989). GABA-like immunoreactivity in the cat retina: Electron microscopy. Journal of Comparative Neurology 279, 5567.CrossRefGoogle ScholarPubMed
Cohen, J.L. (1988). The action of γ-aminobutyric acid on the horizontal cells of the skate retina. Brain Research 455, 366369.CrossRefGoogle ScholarPubMed
Daw, N.W., Brunken, W.J. & Parkinson, D. (1989). The function of synaptic transmitters in the retina. Annual Reviews of Neuroscience 12, 205226.CrossRefGoogle ScholarPubMed
Eliasof, S. & Werblin, F. (1989). GABAA and GABAB mediated synaptic transmission to cones in the tiger salamander retina. Investigative Ophthalmology and Visual Science (Suppl.) 30, 163.Google Scholar
Feigenspan, A., Wässle, H. & Bormann, H. (1993). Pharmacology of GABA receptor Cl channels in rat retinal bipolar cells. Nature 361, 159162.CrossRefGoogle ScholarPubMed
Freed, M.A. (1992). GABAergic circuits in the mammalian retina. In Progress in Brain Research, Vol. 90: GABA in the Retina and Central Nervous System, ed. Mize, R.R., Marc, R.E. & Sillito, A.M., pp. 107132. Amsterdam: Elsevier.Google Scholar
Freed, M.A., Nakamura, Y. & Sterling, P. (1983). Four types of amacrine in the cat retina that accumulate GABA. Journal of Comparative Neurology 219, 295304.CrossRefGoogle ScholarPubMed
Freed, M.A., Smith, R.G. & Sterling, P. (1987). Rod bipolar array in the cat retina: Pattern of input from rods and GABA-accumulating amacrine cells. Journal of Comparative Neurology 266, 445455.CrossRefGoogle ScholarPubMed
Freed, M.A. & Sterling, P. (1988). The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. Journal of Neuroscience 8, 23022320.CrossRefGoogle ScholarPubMed
Frumkes, T.E. & Nelson, R. (1991). GABAergic transmission in distal mammalian retina. Neuroscience Abstracts 17, 13.Google Scholar
Frumkes, T.E., Voigt, T. & Wässle, H. (1984). Functional organization of GABA and glycine input to cat retinal ganglion cells. Neuroscience Abstracts 14, 20.Google Scholar
Frumkes, T.E. & Wu, S.M. (1990). Independent influences of rod adaptation on cone-mediated response to light onset and offset in distal retinal neurons. Journal of Neurophysiology 64, 10431054.CrossRefGoogle ScholarPubMed
Haberecht, M.F. & Redburn, D.A. (1991). A new method for monitoring release of endogenous retinal transmitters. Investigative Ophthalmology and Visual Science 32, 1264.Google Scholar
Hankins, M.W. & Ruddock, K.H. (1984). Electrophysiological effects of GABA on fish retinal horizontal cells are blocked by bicuculline but not by picrotoxin. Neuroscience Letters 44, 16.CrossRefGoogle Scholar
Hare, W.A. & Owen, W.G. (1990). Spatial organization of the bipolar cell's receptive field in the retina of the tiger salamander. Journal of Physiology 421, 223245.CrossRefGoogle ScholarPubMed
Kamermans, M. & Werblin, W. (1992). GABA-mediated positive autofeedback loop controls horizontal cell kinetics in tiger salamander retina. Journal of Neuroscience 12, 23512463.CrossRefGoogle ScholarPubMed
Kaneko, A. & Tachibana, M. (1986 a). Effects of Gamma-aminobutyric acid on isolated cone photoreceptor of the turtle retina. Journal of Physiology 373, 443461.CrossRefGoogle ScholarPubMed
Kaneko, A. & Tachibana, M. (1986 b). Blocking effects of cobalt and related ions on the gamma-aminobutyric acid-induced current in turtle retinal cones. Journal of Physiology 373, 463479.CrossRefGoogle ScholarPubMed
Malchow, R.P. & Ripps, H. (1989). Effects of gamma-aminobutyric acid on skate retinal horizontal cells: Evidence for an electrogenic uptake mechanism. Proceedings of the National Academy of Sciences of the U.S.A. 87, 89458949.CrossRefGoogle Scholar
Marc, R.E. (1992). Structural organization of GABAergic circuitry in ectotherm retinas. In Progress in Brain Research, Vol. 90: GABA in the Retina and Central Nervous System, ed. Mize, R.R., Marc, R.E. & Sillito, A.M., pp. 6192. Amsterdam: Elsevier.Google Scholar
Marc, R.E., Stell, W.K., Bok, D. & Lam, D.M.K. (1978). GABAergic pathways in the goldfish retina. Journal of Comparative Neurology 182, 221246.CrossRefGoogle ScholarPubMed
Mariani, A.P. & Caserta, C.T. (1986). Electron microscopy of glutamate decarboxylase (GAD) immunoreactivity in the inner plexiform layer of the rhesus monkey retina. Journal of Neurocytology 15, 645655.CrossRefGoogle ScholarPubMed
Massey, S.C. & Redburn, D.A. (1987). Transmitter circuits in the vertebrate retina. Progress in Neurobiology 28, 5596.CrossRefGoogle ScholarPubMed
Miller, R.F., Frumkes, T.E., Slaughter, M.M. & Dacheux, R.F. (1981). Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina: I. Receptors, horizontal cells, bipolars, and G-cells. Journal of Neurophysiology 45, 743763.CrossRefGoogle ScholarPubMed
Murakami, M., Ohtsu, K. & Ohtsuka, T. (1972). Effects of chemicals on receptors and horizontal cells in the retina. Journal of Physiology 227, 899913.CrossRefGoogle ScholarPubMed
Nelson, R. (1977). Cat cones have rod input: A comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. Journal of Comparative Neurology 172, 109135.CrossRefGoogle ScholarPubMed
Nelson, R. & Frumkes, T.E. (1992). The relative potency of GABAA antagonists is different in inner and outer mammalian retina. Investigative Ophthalmology and Visual Science 33, 1032.Google Scholar
Nelson, R., Frumkes, T.E., Eysteinsson, T. & Pflug, R. (1993). GABAergic and non-GABAergic forms of suppressive rod-cone interaction. Investigative Ophthalmology and Visual Science (Suppl.) 34, 1291.Google Scholar
Nelson, R. & Kolb, H. (1983). Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Research 23, 11831195.CrossRefGoogle ScholarPubMed
Nelson, R. & Kolb, H. (1985). A17: A broad-field amacrine cell in the rod system of the cat retina. Journal of Neurophysiology 54, 592614.CrossRefGoogle ScholarPubMed
Nelson, R., Pflug, R. & Baer, S.M. (1990). Background-induced flicker enhancement in cat retinal horizontal cells, II. Spatial properties. Journal of Neurophysiology 64, 326340.CrossRefGoogle ScholarPubMed
Pan, Z.-H. & Slaughter, M.M. (1991). Control of retinal information coding by GABAB receptors. Journal of Neuroscience 11, 18101821.CrossRefGoogle ScholarPubMed
Perlman, I. & Normann, R.A. (1990). The effects of GABA and related drugs on horizontal cells in the isolated turtle retina. Visual Neuroscience 5, 469477.CrossRefGoogle ScholarPubMed
Pflug, R., Nelson, R. & Ahnelt, P.K. (1990). Background-induced flicker-enhancement in cat retinal horizontal cells. I: Temporal and spectral properties. Journal of Neurophysiology 64, 313325.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1983). Neuronal subpopulations in cat retina which accumulate the GABA agonist, (3H)muscimol: A combined Golgi and autoradiographic study. Journal of Comparative Neurology 219, 2535.CrossRefGoogle ScholarPubMed
Qian, H. & Dowling, J.E. (1993). Novel GABA responses from roddriven retinal horizontal cells. Nature 361, 162164.CrossRefGoogle ScholarPubMed
Sarthy, P.V. & Fu, M. (1989). Localization of L-glutamic acid decarboxylase mRNA in cat retinal horizontal cells by in situ hybridization. Journal of Comparative Neurology 288, 593600.CrossRefGoogle ScholarPubMed
Schwartz, E.A. (1987). Depolarization without calcium can release γ-aminobutyric acid from a retinal neuron. Science 238, 350354.CrossRefGoogle ScholarPubMed
Stockton, R.A. & Slaughter, M.M. (1991). Depolarizing actions of GABA and glycine upon amphibian retinal horizontal cells. Journal of Neurophysiology 65, 680692.CrossRefGoogle ScholarPubMed
Stone, S. & Witkovksy, P. (1984). The actions of GABA, glycine, and their antagonists upon horizontal cells of the Xenopus retina. Journal of Physiology 353, 249264.CrossRefGoogle ScholarPubMed
Tachibana, M. (1983). Ionic currents of solitary horizontal cells isolated form goldfish retina. Journal of Physiology 345, 329351.CrossRefGoogle Scholar
Vardi, N., Masarachia, P. & Sterling, P. (1992). Immunoreactivity to GABAA receptor in the outer plexiform layer of the cat retina. Journal of Comparative Neurology 320, 394397.CrossRefGoogle ScholarPubMed
Wässle, H. & Boycott, B.B. (1991). Functional architecture of the mammalian retina. Physiological Reviews 71, 447480.CrossRefGoogle ScholarPubMed
Wässle, H. & Chun, M.H. (1989). GABA-like immunoreactivity in the cat retina: Light microscopy. Journal of Comparative Neurology 279, 4354.CrossRefGoogle ScholarPubMed
Weigmann, C. & Brecha, N. (1991). Expression of GABA neuronal transporter mRNA in the rat retina. Neuroscience Abstracts 17, 1565.Google Scholar
Wu, S.M. & Dowling, J.E. (1980). Effects of GABA and glycine on the distal cells of the cyprinid retina. Brain Research 199, 401414.CrossRefGoogle ScholarPubMed
Wu, S.M. (1992). Functional organization of GABAergic circuitry in ectotherm retinas. In Progress in Brain Research, Vol. 90: GABA in the Retina and Central Nervous System, ed. Mize, R.R., Marc, R.E. & Sillito, A.M., pp. 93106. Amsterdam: Elsevier.Google Scholar
Wyatt, H.J. & Daw, N.W. (1976). Specific effects of neurotransmitter antagonists on ganglion cells in rabbit retina. Science 191, 204205.CrossRefGoogle ScholarPubMed
Yang, X.L. & Wu, S.M. (1989). Effects of prolonged light exposure, GABA, and glycine on horizontal cell responses of tiger salamander retina. Journal of Neurophysiology 61, 10251035.CrossRefGoogle ScholarPubMed
Yazulla, S. & Brecha, N. (1980). Binding and uptake of the GABA analogue 3H-muscimol, in the retinas of goldfish and chicken. Investigative Ophthalmology and Visual Science 19, 14151426.Google ScholarPubMed