Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:05:01.079Z Has data issue: false hasContentIssue false

Functional characterization of the rod visual pigment of the echidna (Tachyglossus aculeatus), a basal mammal

Published online by Cambridge University Press:  09 July 2012

CONSTANZE BICKELMANN*
Affiliation:
Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany Present address: Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
JAMES M. MORROW
Affiliation:
Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
JOHANNES MÜLLER
Affiliation:
Museum für Naturkunde – Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Berlin, Germany
BELINDA S.W. CHANG*
Affiliation:
Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
*
Address correspondence and reprint requests to: Dr. Constanze Bickelmann, Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland. E-mail: [email protected] and Prof. Belinda S.W. Chang, Department of Cell & Systems Biology, University of Toronto, 25, Harbord St., Toronto, Ontario, Canada M5S 3G5. E-mail: [email protected]
Address correspondence and reprint requests to: Dr. Constanze Bickelmann, Paläontologisches Institut und Museum, Universität Zürich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland. E-mail: [email protected] and Prof. Belinda S.W. Chang, Department of Cell & Systems Biology, University of Toronto, 25, Harbord St., Toronto, Ontario, Canada M5S 3G5. E-mail: [email protected]

Abstract

Monotremes are the most basal egg-laying mammals comprised of two extant genera, which are largely nocturnal. Visual pigments, the first step in the sensory transduction cascade in photoreceptors of the eye, have been examined in a variety of vertebrates, but little work has been done to study the rhodopsin of monotremes. We isolated the rhodopsin gene of the nocturnal short-beaked echidna (Tachyglossus aculeatus) and expressed and functionally characterized the protein in vitro. Three mutants were also expressed and characterized: N83D, an important site for spectral tuning and metarhodopsin kinetics, and two sites with amino acids unique to the echidna (T158A and F169A). The λmax of echidna rhodopsin (497.9 ± 1.1 nm) did not vary significantly in either T158A (498.0 ± 1.3 nm) or F169A (499.4 ± 0.1 nm) but was redshifted in N83D (503.8 ± 1.5 nm). Unlike other mammalian rhodopsins, echidna rhodopsin did react when exposed to hydroxylamine, although not as fast as cone opsins. The retinal release rate of light-activated echidna rhodopsin, as measured by fluorescence spectroscopy, had a half-life of 9.5 ± 2.6 min−1, which is significantly shorter than that of bovine rhodopsin. The half-life of the N83D mutant was 5.1 ± 0.1 min−1, even shorter than wild type. Our results show that with respect to hydroxylamine sensitivity and retinal release, the wild-type echidna rhodopsin displays major differences to all previously characterized mammalian rhodopsins and appears more similar to other nonmammalian vertebrate rhodopsins such as chicken and anole. However, our N83D mutagenesis results suggest that this site may mediate adaptation in the echidna to dim light environments, possibly via increased stability of light-activated intermediates. This study is the first characterization of a rhodopsin from a most basal mammal and indicates that there might be more functional variation in mammalian rhodopsins than previously assumed.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Betteridge, K., Costall, D., Balladur, S., Upsdell, M. & Umemura, K. (2010). Urine distribution and grazing behaviour of female sheep and cattle grazing a steep New Zeeland hill pasture. Animal Production Science 50, 624629.CrossRefGoogle Scholar
Bolk, L., Göppert, E., Kallius, E. & Lubosch, W. (1934). Handbuch der vergleichenden Anatomie der Wirbeltiere. Berlin, Germany: Urban & Schwarzenberg.Google Scholar
Borhan, B., Souto, M.L., Imai, H., Shichida, Y. & Nakanishi, K. (2000). Movement of retinal along the visual transduction path. Science 288, 22092212.CrossRefGoogle ScholarPubMed
Bowmaker, J.K. (2008). Evolution of vertebrate visual pigments. Vision Research 48, 20222041.CrossRefGoogle ScholarPubMed
Campbell, N.A. & Reece, J.B. (2009). Biologie. München, Germany: Pearson Studium.Google Scholar
Carvalho, L.S., Cowing, J.A., Wilkie, S.E., Bowmaker, J.K. & Hunt, D.M. (2006). Shortwave visual sensitivity in tree and flying squirrels reflects changes in lifestyle. Current Biology 16, R8183.CrossRefGoogle ScholarPubMed
Chen, M.H., Kuemmel, C., Birge, R.R. & Knox, B.E. (2012). Rapid retinal release from a cone visual pigment following photoactivation. Biochemistry 51, 41174125.CrossRefGoogle ScholarPubMed
Chinen, A., Hamaoka, T., Yamada, Y. & Kawamura, S. (2003). Gene duplication and spectral diversification of cone visual pigments of zebrafish. Genetics 163, 663675.CrossRefGoogle ScholarPubMed
Davies, W.L., Carvalho, L.S., Cowing, J.A., Beazley, L.D., Hunt, D.M. & Arrese, C.A. (2007). Visual pigments of the platypus: A novel route to mammalian colour vision. Current Biology 17, R161R163.CrossRefGoogle ScholarPubMed
Dawson, T.J., Grant, T.R. & Fanning, D. (1979). Standard metabolism of monotremes and the evolution of homeothermy. Australian Journal of Zoology 27, 511515.CrossRefGoogle Scholar
Farrens, D.L. & Khorana, H.G. (1995). Structure and function in rhodopsin. Measurement of the rate of metarhodopsin II decay by fluorescence spectroscopy. The Journal of Biological Chemistry 270, 50735076.CrossRefGoogle ScholarPubMed
Fasick, J.I. & Robsinson, P.R. (1998). Mechanism of spectral tuning in the dolphin visual pigments. Biochemistry 37, 433438.CrossRefGoogle ScholarPubMed
Fasick, J.I. & Robinson, P.R. (2000). Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth. Visual Neuroscience 17, 781788.CrossRefGoogle ScholarPubMed
Flannery, T.F. & Groves, C.P. (1998). A revision of the genus Zaglossus (Monotremata, Tachyglossidae), with description of new species and subspecies. Mammalia 62, 367396.CrossRefGoogle Scholar
Gresser, E.B. & Noback, C.V. (1935). The eye of the monotreme, Echidna hystrix. Journal of Morphology 58, 279284.CrossRefGoogle Scholar
Griffiths, M. (1989). Tachyglossidae. In Fauna of Australia. Mammalia, ed. Walton, D.W. & Richardson, B.J. pp. 407435. Canberra, Australia: Australian Capital Territory 1B.Google Scholar
Heck, M., Schadel, S.A., Maretzki, D., Bartl, F.J., Ritter, E., Palczewski, K. & Hofmann, K.P. (2003). Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II. The Journal of Biological Chemistry 278, 31623169.CrossRefGoogle ScholarPubMed
Imai, H., Imamoto, Y., Yoshizawa, T. & Shichida, Y. (1995). Difference in molecular properties between chicken green and rhodopsin as related to the functional difference between cone and rod photoreceptor cells. Biochemistry 34, 1052510531.CrossRefGoogle Scholar
Imai, H., Kefalov, V., Sakurai, K., Chisaka, O., Ueda, Y., Onishi, A., Morizumi, T., Fu, Y., Ichikawa, K., Nakatani, K., Honda, Y., Chen, J., Yau, K.-W. & Shichida, Y. (2007). Molecular properties of rhodopsin and rod function. The Journal of Biological Chemistry 282, 66776684.CrossRefGoogle ScholarPubMed
Imai, H., Kojima, D., Oura, T., Tachibanaki, S., Terakita, A. & Shichida, Y. (1997). Single amino acid residue as a functional determinant of rod and cone visual pigments. Proceedings of the National Academy of Sciences of the United States of America 94, 23222326.CrossRefGoogle ScholarPubMed
Janke, A., Magnell, O., Wieczorek, G., Westerman, M. & Arnason, U. (2002). Phylogenetic analysis of 18S rRNA and the mitochondrial genomes of the wombat, Vombatus ursinus, and the spiny anteater, Tachyglossus aculeatus: Increased support for the Marsupionta hypothesis. Journal of Molecular Evolution 54, 7180.CrossRefGoogle ScholarPubMed
Janz, J.M. & Farrens, D.L. (2004). Role of the retinal hydrogen bond network in rhodopsin Schiff base stability and hydrolysis. The Journal of Biological Chemistry 279, 5588655894.CrossRefGoogle ScholarPubMed
Kawamura, S. & Yokoyama, S. (1998). Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis). Vision Research 38, 3744.CrossRefGoogle ScholarPubMed
Kuwayama, S., Imai, H., Hirano, T., Terakita, A. & Shichida, Y. (2002). Conserved proline residues at position 189 in cone visual pigments as a determinant of molecular properties different from rhodopsins. Biochemistry 41, 1524515252.CrossRefGoogle ScholarPubMed
Kuwayama, S., Imai, H., Morizumi, T. & Shichida, Y. (2005). Amino acid residues responsible for the meta-III decay rates in rod and cone visual pigments. Biochemistry 44, 22082215.CrossRefGoogle ScholarPubMed
Lamb, T.D. & Pugh, E.N. Jr (2004). Dark adaptation and the retinoid cycle of vision. Progress in Retinal and Eye Research 23, 307380.CrossRefGoogle ScholarPubMed
Lewis, J.W., van Kuijk, F.J., Carruthers, J.A. & Kliger, D.S. (1997). Metarhodopsin III formation and decay kinetics: Comparison of bovine and human rhodopsin. Vision Research 37, 18.CrossRefGoogle ScholarPubMed
Luo, Z.-X., Kielan-Jaworowska, Z. & Cifelli, R.L. (2002). In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47, 178.Google Scholar
Menon, S.T., Han, M. & Sakmar, T.P. (2001). Rhodopsin: Structural basis of molecular physiology. Physiological Reviews 81, 16591688.CrossRefGoogle ScholarPubMed
Morrow, J.M. & Chang, B.S.W. (2010). The p1D4-hrGFP II expression vector: A tool for expressing and purifying visual pigments and other G protein-coupled receptors. Plasmid 64, 162169.CrossRefGoogle ScholarPubMed
Morrow, J.M., Lazic, S. & Chang, B.S.W. (2011). A novel rhodopsin-like gene expressed in zebrafish retina. Visual Neuroscience 28, 325335.CrossRefGoogle ScholarPubMed
Nathans, J. & Hogness, D.S. (1983). Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34, 807814.CrossRefGoogle ScholarPubMed
Natochin, M., Gasimov, K.G., Moussalf, M. & Artemyev, N.O. (2003). Rhodopsin determinants for transducin activation: A gain-of-function approach. The Journal of Biological Chemistry 278, 3757437581.CrossRefGoogle ScholarPubMed
Nicol, S. & Andersen, N.A. (2006). Body temperature as an indicator of egg-laying in the echidna, Tachyglossus aculeatus. Journal of Thermal Biology 31, 483490.CrossRefGoogle Scholar
Okada, T., Matsuda, T., Kandori, H., Fukada, Y., Yoshizawa, T. & Shichida, Y. (1994). Circular dichroism of metaiodopsin II and its binding to transducin: A comparative study between meta II intermediates of iodopsin and rhodopsin. Biochemistry 33, 49404946.CrossRefGoogle ScholarPubMed
Oprian, D.D., Molday, R.S., Kaufmann, R.J. & Khorana, H.G. (1987). Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proceedings of the National Academy of Sciences of the United States of America 84, 88748878.CrossRefGoogle ScholarPubMed
Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M. & Miyano, M. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739745.CrossRefGoogle ScholarPubMed
Peters, W. & Doria, G. (1876). Diagnosi di alcune nuove specie di Marsupiali appartenenti Fauna papuana. Annali del Museo Civico di Storia Naturale ‘Giacomo Doria’ 7: 541.Google Scholar
Phillips, M.J., Bennett, T.H. & Lee, M.S.Y. (2009). Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas. Proceedings of the National Academy of Sciences of the United States of America 106, 1708917094.CrossRefGoogle ScholarPubMed
Posada, D. (2008). jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25, 12531256.CrossRefGoogle ScholarPubMed
Pulagam, L.P. & Palczewski, K. (2010). Electrostatic compensation restores trafficking of the autosomal recessive retinitis pigmentosa E150K opsin mutant to the plasma membrane. The Journal of Biological Chemistry 285, 2944629456.CrossRefGoogle ScholarPubMed
Rismiller, P. (1999). The Echidna – Australia’s Enigma. Hong Kong: Hugh Lauter Levin Associates, Inc.Google Scholar
Rismiller, P. & McKelvey, M.W. (2009). Activity and behaviour of lactating echidnas (Tachyglossus aculeatus multiaculeatus) from hatching of egg to weaning of young. Australian Journal of Zoology 57, 265273.CrossRefGoogle Scholar
Ronquist, F. & Huelsenbeck, J.P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Rowe, T., Rich, T.H., Vickers-Rich, P., Springer, M. & Woodburne, M.O. (2008). The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proceedings of the National Academy of Sciences of the United States of America 105, 12381242.CrossRefGoogle ScholarPubMed
Sakmar, T.P., Menon, S.T., Marin, E.P. & Awad, E.S. (2002). Rhodopsin: Insights from recent structural studies. Annual Review of Biophysics and Biomolecular Structure 31, 443484.CrossRefGoogle ScholarPubMed
Shaw, G. (1792). Museum Leverianum, Containing Select Specimens from the Museum of the Late Sir Ashton Lever with Descriptions in Latin and English. London: J. Parkinson.Google Scholar
Shaw, G. (1799). The duck-billed platypus. In The Naturalists’ Miscellany. London: F. P. Nodder.Google Scholar
Shaw, C.N., Wilson, P.J. & White, B.N. (2003). A reliable molecular method of gender determination for mammals. Journal of Mammalogy 84, 123128.2.0.CO;2>CrossRefGoogle Scholar
Shen, Y.-Y., Liu, J., Irwin, D.M. & Zhang, Y.-P. (2010). Parallel and convergent evolution of the dim-light vision gene RH1 in bats (Order: Chiroptera). PloS ONE 5, e8838.CrossRefGoogle ScholarPubMed
Sommer, M.E. & Farrens, D.L. (2006). Arrestin can act as a regulator of rhodopsin photochemistry. Vision Research 46, 45324546.CrossRefGoogle ScholarPubMed
Starace, D.M. & Knox, B.E. (1998). Cloning and expression of a Xenopus short wavelength cone pigment. Experimental Eye Research 67, 209220.CrossRefGoogle ScholarPubMed
Stavenga, D.G., Smits, R.P. & Hoenders, B.J. (1993). Simple exponential functions describing the absorbance bands of visual pigment spectra. Vision Research 33, 10111017.CrossRefGoogle ScholarPubMed
Sugawara, T., Imai, H., Nikaido, M., Imamoto, Y. & Okada, N. (2010). Vertebrate rhodopsin adaptation to dim light via rapid meta-II intermediate formation. Molecular Biology and Evolution 27, 506519.CrossRefGoogle ScholarPubMed
Tam, B.M. & Moritz, O.L. (2009). The role of rhodopsin glycosylation in protein folding, trafficking, and light-sensitive retinal degeneration. The Journal of Neuroscience 29, 1514515154.CrossRefGoogle ScholarPubMed
Thomas, M.O. (1907). A new Acanthoglossus from the island of Salawatti. Annals and Magazine of Natural History London 20, 498499.CrossRefGoogle Scholar
Wakefield, M.J., Anderson, M., Chang, E., Wei, K.-J., Kaul, R., Graves, J.A.M., Grützner, F. & Deeb, S.S. (2008). Cone visual pigments of monotremes: Filling the phylogenetic gap. Visual Neuroscience 25, 257264.CrossRefGoogle ScholarPubMed
Warren, W.C., Hillier, L.W., Graves, J.A.M., Birney, E., Ponting, C.P., Grützner, F., Belov, K., Miller, W., Clarke, L., Chinwalla, A.T., Yang, S.-P., Heger, A., Locke, D.P., Miethke, P., Waters, P.D., Veyrunes, F., Fulton, L., Fulton, B., Graves, T., Wallis, J., Puente, X.S., López-Otín, C., Ordóñez, G.R., Eichler, E.E., Chen, L., Cheng, Z., Deakin, J.E., Alsop, A., Thompson, K., Kirby, P., Papenfuss, A.T., Wakefield, M.J., Olender, T., Lancet, D., Huttley, G.A., Smit, A.F.A., Pask, A., Temple-Smith, P., Batzer, M.A., Walker, J.A., Konkel, M.K., Harris, R.S., Whittington, C.M., Wong, E.S.W., Gemmell, N.J., Buschiazzo, E., Vargas Jentzsch, I.M., Merkel, A., Schmitz, J., Zemann, A., Churakov, G., Kriegs, J.O., Brosius, J., Murchison, E.P., Sachidanandam, R., Smith, C., Hannon, G.J., Tsend-Ayush, E., McMillan, D., Attenborough, R., Rens, W., Ferguson-Smith, M., Lefèvre, C.M., Sharp, J.A., Nicholas, K.R., Ray, D.A., Kube, M., Reinhardt, R., Pringle, T.H., Taylor, J., Jones, R.C., Nixon, B., Dacheux, J.-L., Niwa, H., Sekita, Y., Huang, X., Stark, A., Kheradpour, P., Kellis, M., Flicek, P., Chen, Y., Webber, C., Hardison, R., Nelson, J., Hallsworth-Pepin, K., Delehaunty, K., Markovic, C., Minx, P., Feng, Y., Kremitzki, C., Mitreva, M., Glasscock, J., Wylie, T., Wohldmann, P., Thiru, P., Nhan, M.N., Pohl, C.S., Smith, S.M., Hou, S., Renfree, M.B., Mardis, E.R. & Wilson, R.K. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature 455, 175256.CrossRefGoogle Scholar
Werneburg, I. & Sánchez-Villagra, M.R. (2010). The early development of the echidna, Tachyglossus aculeatus (Mammalia: Monotremata), and patterns of mammalian development. Acta Zoologica 92, 7588.CrossRefGoogle Scholar
Woodburne, M.O., Rich, T.H. & Springer, M.S. (2003). The evolution of tribospheny and the antiquity of mammalian clades. Molecular Phylogenetics and Evolution 28, 360385.CrossRefGoogle ScholarPubMed
Yan, E.C., Kazmi, M.A., De, S., Chang, B.S., Selbert, C., Marin, E.P., Mathies, R.A. & Sakmar, T.P. (2002). Function of extracellular loop 2 in rhodopsin: glutamic acid 181 modulates stability and absorption wavelength of metarhodopsin II. Biochemistry 41, 36203627.CrossRefGoogle ScholarPubMed
Young, H.M. & Pettigrew, J.D. (1991). Cone photoreceptors lacking oil droplets in the retina of the echidna, Tachyglossus aculeatus (Monotremata). Visual Neuroscience 6, 409420.CrossRefGoogle ScholarPubMed
Zhao, H., Ru, B., Teeling, E.C., Faulkes, C.G., Zhang, S. & Rossiter, S.J. (2009). Rhodopsin molecular evolution in mammals inhabiting low light environments. PloS ONE 4, e8326.CrossRefGoogle ScholarPubMed
Supplementary material: File

Bickelmann supplementary table 1

Bickelmann supplementary table 1

Download Bickelmann supplementary table 1(File)
File 28.7 KB
Supplementary material: File

Bickelmann supplementary table 2

Bickelmann supplementary table 2

Download Bickelmann supplementary table 2(File)
File 30.2 KB
Supplementary material: File

Bickelmann supplementary table 3

Bickelmann supplementary table 3

Download Bickelmann supplementary table 3(File)
File 38.9 KB
Supplementary material: File

Bickelmann supplementary table 4

Bickelmann supplementary table 4

Download Bickelmann supplementary table 4(File)
File 42 KB